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Mathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing1

1 The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, no. 1, 161–228, 1939.



Foreword

Based on more than fifteen years of teaching, this book provides an exceptionally
useful addition to the introductory literature on Models of Computation. It covers
a wealth of material on imperative, functional, concurrent and probabilistic compu-
tation, their models and reasoning techniques. It does so in a carefully pedagogic
way, honed over the years with the help of the students at Pisa. Supplemented with
educative examples, explanations and problems (accompanied by solutions) and
including a coverage of the techniques of probabilistic and quantitative computation,
it provides the student with a rich background and solid foundation for future study
and research.

If quality of teaching is to be judged from the quality of students, then teaching
in Pisa scores very highly indeed. Over several generations brilliant students from
Pisa have made their mark in Computer Science in Europe and the US. All those I
know have come under the influence of Ugo Montanari and more recently that of his
colleague Roberto Bruni. The broader access this book gives to their expertise and
teaching is very welcome.

On a personal note it is a pleasure to acknowledge the friendly collaboration that
Ugo Montanari has helped foster over many years, from the first time I visited Pisa
for the Pisa Summer School in 1978 — my PhD thesis was born on the grassy area by
the Cathedral and Leaning Tower — through to Ugo leading an EU project in which
I participated. On the possible start of the UK’s withdrawal from the EU I look back
with nostalgia to those days of openness and cooperation, now fallen victim to the
selfish interference of politicians. This book in its unifying treatment of a criss-cross
of work carried out in Europe and the US is a testimony to the power of collaboration
in research and education.

Cambridge Glynn Winskel
July 2016
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Preface

The origins of this book have their roots in more than 15 years of teaching a course
on formal semantics to Computer Science graduate students in Pisa, originally called
Fondamenti dell’Informatica: Semantica (Foundations of Computer Science: Seman-
tics) and covering models for imperative, functional and concurrent programming.
It later evolved into Tecniche di Specifica e Dimostrazione (Techniques for Specifi-
cations and Proofs) and finally into the currently running Models of Computation,
where additional material on probabilistic models is included.

The objective of this book, as well as of the above courses, is to present different
models of computation and their basic programming paradigms, together with their
mathematical descriptions, both concrete and abstract. Each model is accompanied by
some relevant formal techniques for reasoning on it and for proving some properties.

To this aim, we follow a rigorous approach to the definition of the syntax, the
typing discipline and the semantics of the paradigms we present, i.e., the way in
which well-formed programs are written, ill-typed programs are discarded and the
meaning of well-typed programs is unambiguously defined, respectively. In doing
so, we focus on basic proof techniques and do not address more advanced topics in
detail, for which classical references to the literature are given instead.

After the introductory material (Part I), where we fix some notation and present
some basic concepts such as term signatures, proof systems with axioms and inference
rules, Horn clauses, unification and goal-driven derivations, the book is divided into
four main parts (Parts II-V), according to the different styles of the models we
consider:

IMP: imperative models, where we apply various incarnations of well-founded
induction and introduce λ -notation and concepts like structural recursion,
program equivalence, compositionality, completeness and correctness,
and also complete partial orders, continuous functions, and fixpoint the-
ory;

HOFL: higher-order functional models, where we study the role of type systems,
the main concepts from domain theory and the distinction between lazy
and eager evaluation;

ix



x Preface

CCS, π: concurrent, nondeterministic and interactive models, where, starting from
operational semantics based on labelled transition systems, we introduce
the notions of bisimulation equivalences and observational congruences,
and overview some approaches to name mobility, and temporal and modal
logic system specifications;

PEPA: probabilistic/stochastic models, where we exploit the theory of Markov
chains and of probabilistic reactive and generative systems to address
quantitative analysis of, possibly concurrent, systems.

Each of the above models can be studied separately from the others, but previous
parts introduce a body of notions and techniques that are also applied and extended
in later parts.

Parts I and II cover the essential, classic topics of a course on formal semantics.
Part III introduces some basic material on process algebraic models and temporal

and modal logic for the specification and verification of concurrent and mobile
systems. CCS is presented in good detail, while the theory of temporal and modal
logic, as well as the π-calculus, are just overviewed. The material in Part III can be
used in conjunction with other textbooks, e.g., on model checking or the π-calculus,
in the context of a more advanced course on the formal modelling of distributed
systems.

Part IV outlines the modelling of probabilistic and stochastic systems and their
quantitative analysis with tools like PEPA. It provides the basis for a more advanced
course on quantitative analysis of sequential and interleaving systems.

The diagram that highlights the main dependencies is represented below:

Imperative
Chapter 3

Chapter 4

Chapter 5

Chapter 6

Functional
Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Concurrent
Chapter 11

Chapter 12

Chapter 13

Chapter 11

Chapter 12

Chapter 13

Probabilistic
Chapter 14

Chapter 15

Chapter 16

lambda 
notation

induction 
and 

structural 
recursion

CPO and
fixpoint

LTS and 
bisimulation

HM logic

The diagram contains a rectangular box for each chapter/part and a round-cornered
box for each subject: a line with a filled-circle end joins a subject to the chapter
where it is introduced, while a line with an arrow end links a subject to a chapter or
part where it is used. In short:



Preface xi

Induction and recursion: various principles of induction and the concept of struc-
tural recursion are introduced in Chapter 4 and used
extensively in all subsequent chapters.

CPO and fixpoint: the notions of complete partial order and fixpoint compu-
tation are first presented in Chapter 5. They provide the
basis for defining the denotational semantics of IMP and
HOFL. In the case of HOFL, a general theory of product
and functional domains is also introduced (Chapter 8).
The notion of fixpoint is also used to define a particular
form of equivalence for concurrent and probabilistic sys-
tems, called bisimilarity, and to define the semantics of
modal logic formulas.

Lambda notation: λ -notation is a useful syntax for managing anonymous
functions. It is introduced in Chapter 6 and used exten-
sively in Part III.

LTS and bisimulation: Labelled transition systems are introduced in Chapter 11
to define the operational semantics of CCS in terms of the
interactions performed. They are then extended to deal
with name mobility in Chapter 13 and with probabilities
in Part V. A bisimulation is a relation over the states of an
LTS that is closed under the execution of transitions. The
above mentioned bisimilarity is the coarsest bisimulation
relation. Various forms of bisimulation are studied in
Parts IV and V.

HM-logic: Hennessy-Milner logic is the logic counterpart of bisimi-
larity: two states are bisimilar if and only if they satisfy
the same set of HM-logic formulas. In the context of
probabilistic systems, the approach is extended to Larsen-
Skou logic in Chapter 15.

Each chapter of the book concludes with a list of exercises that span over the main
techniques introduced in that chapter. Solutions to selected exercises are collected at
the end of the book.

Pisa, Roberto Bruni
February 2016 Ugo Montanari
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Part I
Preliminaries



This part introduces the basic terminology, notation and mathematical tools used
in the rest of the book.



Chapter 1
Introduction

It is not necessary for the semantics to determine an
implementation, but it should provide criteria for showing that an
implementation is correct. (Dana Scott)

Abstract This chapter overviews the motivation, guiding principles and main con-
cepts used in the book. It starts by explaining the role of formal semantics and
different approaches to its definition, then briefly touches on some important sub-
jects covered in the book, such as domain theory and induction principles, and it is
concluded by an explanation of the content of each chapter, together with a list of
references to the literature for studying some topics in more depth or for using some
companion textbooks in conjunction with the current text.

1.1 Structure and Meaning

Any programming language is fully defined in terms of three essential features:

Syntax: refers to the appearance of the programs of the language;
Types: restrict the syntax to enforce suitable properties on programs;
Semantics: refers to the meanings of (well-typed) programs.

Example 1.1. The alphabet of Roman numerals, the numeric system used in ancient
Rome, consists of seven letters drawn from the Latin alphabet. A value is assigned
to each letter (see Table 1.1) and a number n is expressed by juxtaposing some
letters whose values sum to n. Not all sequences are valid though. Symbols are
usually placed from left to right, starting with the largest value and ending with the
smallest value. However, to avoid four repetitions in a row of the same letter, e.g.,
IIII, subtractive notation is used: when a symbol with smaller value u is placed to
the left of a symbol with higher value v they represent the number v− u. So the
symbol I can be placed before V or X; the symbol X before L or C and the symbol C
before D or M, and 4 is written IV instead of IIII. While IX and XI are both correct
sequences, with values 9 and 11, respectively, the sequence IXI is not correct and has
no corresponding value. The rules that prescribe the correct sequences of symbols
define the (well-typed) syntax of Roman numerals. The rules that define how to
evaluate Roman numerals to positive natural numbers give their semantics.

© Springer International Publishing Switzerland 2017
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4 1 Introduction

Table 1.1: Alphabet of Roman numerals

Symbol I V X L C D M

Value 1 5 10 50 100 500 1,000

1.1.1 Syntax, Types and Pragmatics

The syntax of a formal language tells us which sequences of symbols are valid
statements and which ones make no sense and should be discarded.

Mathematical tools such as regular expressions, context-free grammars and
Backus-Naur Form (BNF) are now widely applied tools for defining the syntax
of formal languages. They are studied in every computer science degree and are
exploited in technical appendices of many programming language manuals to define
the grammatical structure of programs without ambiguities.

Types can be used to limit the occurrence of errors or to allow compiler opti-
misations or to reduce the risk of introducing bugs or just to discourage certain
programming malpractices. Types are often presented as sets of logic rules, called
type systems, that are used to assign a type unambiguously to each program and
computed value. Different type systems can be defined over the same language to
enforce different properties.

However, grammars and types do not explain what a correctly written program
means. Thus, every language manual also contains natural language descriptions
of the meaning of the various constructs, how they should be used and styled, and
example code fragments. This attitude falls under the pragmatics of a language,
describing, e.g., how the various features should be used and which auxiliary tools
are available (syntax checkers, debuggers, etc.). Unfortunately this leaves space for
different interpretations that can ultimately lead to discordant implementations of the
same language or to compilers that rely on questionable code optimisation strategies.

If an official formal semantics of a language were available as well, it could
accompany the language manual too and solve any ambiguity for implementors and
programmers. This is not yet the case because effective techniques for specifying the
run-time behaviour of programs in a rigorous manner have proved much harder to
develop than grammars.

1.1.2 Semantics

The origin of the word ‘semantics’ can be traced back to a book by French philologist
Michel Bréal (1832–1915), published in 1900, where it referred to the study of how
words change their meanings. Subsequently, the word ‘semantics’ has also changed
its meaning, and it is now generally defined as the study of the meanings of words
and phrases in a language.
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In Computer Science, semantics is concerned with the study of the meaning of
(well-typed) programs.

Studies in formal semantics are not always easily accessible to a student of
computer science or engineering without a good background in mathematical logic,
and, as a consequence, they are often regarded as an esoteric subject by people not
familiar enough with the mathematical tools involved.

Following [36] we can ask ourselves: what do we gain by formalising the seman-
tics of a programming language?

After all, programmers can write programs that are trusted to “work as expected”
once they have been thoroughly tested, so how would the effort spent in a rigorous
formalisation of the semantics pay back? An easy answer is that today, in the era of
the Internet of Things and cyberphysical systems, our lives, the machines and devices
we use, and the entire world run on software. It is not enough to require that medical
implants, personal devices, planes and nuclear reactors seem to “work as expected”!

To give a more circumstantiated answer, we can start from the related question:
what was gained when language syntax was formalised?

It is generally understood that the formalisation of syntax leads, e.g., to the
following benefits:

1. it standardises the language; this is crucial

• to programmers, as a guide to write syntactically correct programs, and
• to implementors, as a reference to develop a correct parser.

2. it permits a formal analysis of many properties, such as finding and resolving
parsing ambiguities.

3. it can be used as input to a compiler front-end generating tool, such as Yacc,
Bison, or Xtext. In this way, from the syntax definition one can automatically
derive an implementation of the compiler’s front end.

Formalising the semantics of a programming language can then lead to similar
benefits:

1. it standardises a machine-independent specification of the language; this is crucial:

• to programmers, for improving the programs they write, and
• to implementors, to design a correct and efficient code generator.

2. it permits a formal analysis of program properties, such as type safety, termination,
specification compliance and program equivalence.

3. it can be used as input to a compiler back-end generating tool. In this way, the
semantics definition also gives the (prototypal and possibly inefficient) implemen-
tation of the back end of the language’s compiler. Moreover, efficient compilers
need to adhere to the semantics and their optimisations need correctness proofs.

What is then the semantics of a programming language?
A crude view is that the semantics of a programming language is defined by (the

back end of) its compiler or interpreter: from the source program to the target code
executed by the computer. This view is clearly not acceptable because, e.g., it refers
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to specific pieces of commercial hardware and software, and the specification is not
good for portability, it is not at the right level of abstraction to be understood by a
programmer, it is not at the right level of abstraction to state and prove interesting
properties of programs (for example, two programs written for the same purpose
by different programmers are likely different, even if they should have the same
meaning). Finally, if different implementations are given, how do we know that they
are correct and compatible?

Example 1.2. We can hardly claim to know that two programs mean the same thing
if we cannot tell what a program means. For example, consider the Java expressions

x + (y + z) (x + y) + z

Are they equivalent? Can we replace the former with the latter (and vice versa) in
a program, without changing its meaning? Under what circumstances?1

To give a semantics for a programming language means to define the behaviour
of any program written in this language. As there are infinitely many programs,
one would like to have a finitary description of the semantics that can take into
account any of them. Only when the semantics is given can one prove such important
properties as program equivalence or program correctness.

1.1.3 Mathematical Models of Computation

In giving a formal semantics to a programming language we are concerned with
building a mathematical model: its purpose is to serve as a basis for understanding
and reasoning about how programs behave. Not only is a mathematical model
useful for various kinds of analysis and verification, but also, at a more fundamental
level, because the activity of trying to define precisely the meanings of program
constructions can reveal all kinds of subtleties which it is important to be aware of.

Unlike the acceptance of BNF as a standard definition method for syntax, there
is little hope that a single definition method will take hold for semantics. This is
because semantics

• is harder to formalise than syntax,
• has a wider variety of applications,
• is dependent on the properties we want to tackle, i.e., different models are best

suited for tackling different issues.

In fact, different semantic styles and models have been developed for different
purposes. The overall aim of the book is to study the main semantic styles, compare
their expressiveness, and apply them to study program properties. To this aim it is

1 Recall that ‘+’ is overloaded in Java: it sums integers and floating points and it concatenates
strings.
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fundamental to gain acquaintance with the principles and theories on which such
semantic models are based.

Classically, semantics definition methods fall roughly into three groups: opera-
tional, denotational and axiomatic. In this book we will focus mainly on the first two
kinds of semantics, which find wider applicability.

Operational Semantics

In the operational semantics it is of interest how the effect of a computation is
achieved. Some kind of abstract machine2 is first defined, then the operational
semantics describes the meaning of a program in terms of the steps/actions that this
machine executes. The focus of operational semantics is thus on states and state
transformations.

An early notable example of operational semantics was concerned with the seman-
tics of LISP (LISt Processor) by John McCarthy (1927–2011) [19]. A later example
was the definition of the semantics of Algol 68 over a hypothetical computer [42].

In 1981, Gordon Plotkin (1946–) introduced the structural operational semantics
style (SOS-style) in the technical report [28] which is still one of the most-cited
technical reports in computer science, only recently revised and re-issued in a jour-
nal [30, 31].

Gilles Kahn (1946–2006) introduced another form of operational semantics,
called natural semantics, or big-step semantics, in 1987, where possibly many steps
of execution are incorporated into a single logical derivation [16].

It is relatively easy to write the operational semantics in the form of Horn clauses,
a particular form of logical implications. In this way, they can be interpreted by a
logic programming system, such as Prolog.3

Because of the strong connection with the syntactic structure and the fact that the
mathematics involved is usually less complicated than in other semantic approaches,
SOS-style operational semantics can provide programmers with a concise and ac-
curate description of what the language constructs do. In fact, it is syntax oriented,
inductive and easy to grasp. Operational semantics is also versatile: it applies with
minor variations to most different computing paradigms.

2 The term machine ordinarily refers to a physical device that performs mechanical functions. The
term abstract distinguishes a physically existent device from one that exists in the imagination of
its inventor or user: it is a convenient conceptual abstraction that leaves out many implementation
details. The archetypical abstract machine is the Turing machine.
3 However, we have to leave aside issues about performance and the fact that Prolog is not complete,
because it exploits a depth-first exploration strategy for the next step to execute: backtracking out of
wrong attempted steps is only possible if they are finitely many.
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Denotational Semantics

In denotational semantics, the meaning of a well-formed program is some mathemati-
cal object (e.g., a function from input data to output data). The steps taken to calculate
the output and the abstract machine where they are executed are unimportant: only
the effect is of interest, not how it is obtained.

The essence of denotational semantics lies in the principle of compositionality: the
semantics takes the form of a function that assigns an element of some mathematical
domain to each individual construct, in such a way that the meaning of a composite
construct does not depend on the particular form of the constituent constructs, but
only on their meanings.

Denotational semantics originated in the pioneering work of Christopher Strachey
(1916–1975) and Dana Scott (1932–) in the late 1960s and in fact it is sometimes
called Scott-Strachey semantics [37, 39, 38].

Denotational semantics descriptions can also be used to derive implementations.
Still there is a problem with performance: operations that can be efficiently performed
on computer hardware, such as reading or changing the contents of storage cells,
are first mapped to relatively complicated mathematical notions which must then be
mapped back again to a concrete computer architecture.

One limitation is that in the case of concurrent, interactive, nondeterministic
systems the body of mathematics involved in the definition of denotational semantics
is quite heavy.

Axiomatic Semantics

Instead of directly assigning a meaning to each program, axiomatic semantics gives
a description of the constructs in a programming language by providing logical
conditions that are satisfied by these constructs. Axiomatic semantics places the
focus on valid assertions for proving program correctness: there may be aspects of
the computation and of the effect that are deliberately ignored.

The axiomatic semantics has been put forward by the work of Robert W. Floyd
(1936–2001) on flowchart languages [8] and of Tony Hoare (1934–) on structured
imperative programs [15]. In fact it is sometimes referred to as Floyd-Hoare logic.
The basic idea is that program statements are described by two logical assertions: a
pre-condition, prescribing the state of the system before executing the program, and
a post-condition, satisfied by the state after the execution, when the pre-condition
is valid. Using such an axiomatic description it is possible, at least in principle, to
prove the correctness of a program with respect to a specification. Two main forms
of correctness are considered:

Partial: a program is partially correct w.r.t. a pre-condition and a post-condition
if whenever the initial state fulfils the pre-condition and the program
terminates, the final state is guaranteed to fulfil the post-condition. The
partial correctness property does not ensure that the program will terminate;
e.g., a program which never terminates satisfies every property.
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Total: a program is totally correct w.r.t. a pre-condition and a post-condition
if whenever the initial state fulfils the pre-condition, then the program
terminates, and the final state is guaranteed to fulfil the post-condition.

The axiomatic method becomes cumbersome in the presence of modular program
constructs, e.g., goto’s and objects, but also as simple as blocks and procedures.
Another limitation of axiomatic semantics is that it is scarcely applicable to the
case of concurrent, interactive systems, whose correct behaviour often involves
non-terminating computations (for which post-conditions cannot be used).

1.2 A Taste of Semantic Methods: Numerical Expressions

We can give a first, informal overview of the different flavours of semantic styles we
will consider in this book by taking a simple example of numerical expressions.4

Let us consider two syntactic categories Nums and Exp, respectively, for numerals
n ∈ Nums and expressions E ∈ Exp, defined by the grammar

n ::= 0 | 1 | 2 | ...

e ::= n | e⊕ e | e⊗ e

The above language of numerical expressions uses the auxiliary set of numerals,
Nums, which are syntactic representations of the more abstract set of natural numbers.

Remark 1.1 (Numbers vs numerals). The natural numbers 0,1,2, ... are mathemat-
ical objects which exist in some abstract world of concepts. They find concrete
representations in different languages. For example, the number 5 is represented by

• the string “five” in English,
• the string “101” in binary notation,
• the string “V” in Roman numerals.

To differentiate between numerals (5) and numbers (5) we use here different fonts.

From the grammar it is evident that there are three ways to build expressions:

• any numeral n is also an expression;
• if we are given any two expressions e0 and e1, then e0⊕ e1 is also an expression;
• if we are given any two expressions e0 and e1, then e0⊗ e1 is also an expression.

In the book we will always use abstract syntax representations, as if all concrete
terms were parsed before we start to work with them.

Remark 1.2 (Concrete and abstract syntax). While the concrete syntax of a language
is concerned with the precise linear sequences of symbols which are valid terms of

4 The example has been inspired by some course notes on the “Semantics of programming lan-
guages”, by Matthew Hennessy.
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the language, we are interested in the abstract syntax, which describes expressions
purely in terms of their structure. We will never be worried about where the brackets
are in expressions like

1⊕2⊗3

because we will never deal with such unparsed terms.
In other words we are considering only (valid) abstract syntax trees, like

⊗

⊕ 3

1 2

Since it would be tedious to draw trees every time, we use linear syntax and brackets,
like (1⊕2)⊗3, to save space while avoiding ambiguities.

An Informal Semantics

Since in the expressions we deliberately used some non-standard symbols ⊕ and ⊗,
we must define what is their meaning. Programmers primarily learn the semantics
of a language through examples, their intuitions about the underlying computa-
tional model, and some natural language description. An informal description of the
meaning of the expressions we are considering could be the following:

• a numeral n is evaluated to the corresponding natural number n;
• to find the value associated with an expression of the form e0⊕e1 we evaluate the

expressions e0 and e1 and take the sum of the results;
• to find the value associated with an expression of the form e0⊗e1 we evaluate the

expressions e0 and e1 and take the product of the results.

We hope the reader agrees that the above guidelines are sufficient to determine
the value of any well-formed expression, no matter how large.5

To accompany the description with some examples, we can add that

• 2 is evaluated to 2;
• (1⊕2)⊗3 is evaluated to 9;
• (1⊕2)⊗ (3⊕4) is evaluated to 21.

Since natural language is notoriously prone to mis-interpretations and mis-
understandings, in the following we try to make the above description more accurate.

We show next how the operational semantics can formalise the steps needed
to evaluate an expression over some abstract computational device and how the
denotational semantics can assign meaning to numerical expressions (their valuation).

5 Note that we are not telling the order in which e0 and e1 must be evaluated: is it important?
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n0⊕n1→ n
n = n0 +n1 (sum)

e0→ e′0
e0⊕ e1→ e′0⊕ e1

(sumL)
e1→ e′1

e0⊕ e1→ e0⊕ e′1
(sumR)

n1⊗n2→ n
n = n1×n2 (prod)

e0→ e′0
e0⊗ e1→ e′0⊗ e1

(prodL)
e1→ e′1

e0⊗ e1→ e0⊗ e′1
(prodR)

Fig. 1.1: Small-step semantics rules for numerical expressions

A Small-Step Operational Semantics

There are several versions of operational semantics for the above language of expres-
sions. The first one we present is likely familiar to you: it simplifies expressions until
a value is met. This is achieved by defining judgements of the form

e0→ e1

to be read as: after performing one step of evaluation of e0, the expression e1 remains
to be evaluated.

Small-step semantics formally describes how individual steps of a computation
take place on an abstract device, but it ignores details such as the use of registers and
storage addresses. This makes the description independent of machine architectures
and implementation strategies.

The logic inference rules are written in the general form (see Section 2.2)

premises
conclusion

side-condition (rule name)

meaning that if the premises and the side-condition are met then the conclusion
can be drawn, where the premises consist of one, none or more judgements and the
side-condition is a single boolean predicate. The rule name is just a convenient label
that can be used to refer to the rule. Rules with no premises are called axioms and
their conclusion is postulated to be always valid.

The rules for the expressions are given in Figure 1.1. For example, the rule sum
says that ⊕ applied to two numerals evaluates to the numeral representing the sum of
the two arguments, while the rule sumL (respectively, sumR) says that we are allowed
to simplify the left (resp., right) argument. Analogously for product.

For example, we can derive both the judgements

(1⊕2)⊗ (3⊕4)→ 3⊗ (3⊕4) (1⊕2)⊗ (3⊕4)→ (1⊕2)⊗7

as witnessed by the formal derivations

1⊕2→ 3
3 = 1+2 (sum)

(1⊕2)⊗ (3⊕4)→ 3⊗ (3⊕4)
(prodL)

3⊕4→ 7
7 = 3+4 (sum)

(1⊕2)⊗ (3⊕4)→ (1⊕2)⊗7
(prodR)
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A derivation is represented as an (inverted) tree, with the goal to be verified at the
root. The tree is generated by applications of the defining rules, with the terminating
leaves being generated by axioms. As derivations tend to grow large, we will intro-
duce a convenient alternative notation for them in Chapter 2 (see Example 2.5 and
Section 2.3) and will use it extensively in the subsequent chapters.

Note that even for a deterministic program, there can be many different computa-
tion sequences leading to the same final result, since the semantics may not specify a
totally ordered sequence of evaluation steps.

If we want to enforce a specific evaluation strategy, then we can change the rules
to guarantee, e.g., that the leftmost occurrence of an operator ⊕/⊗ which has both
its operands already evaluated is always executed first, while the evaluation of the
second operand is conducted only after the first operand has been evaluated. We show
only the two rules that need to be changed (changes are highlighted with boxes):

e1→ e′1
n0 ⊕ e1→ n0 ⊕ e′1

(sumR)
e1→ e′1

n0 ⊗ e1→ n0 ⊗ e′1
(prodR)

Now the step judgement

(1⊕2)⊗ (3⊕4)→ (1⊕2)⊗7

is no longer derivable.
Instead, it is not difficult to derive the judgements

(1⊕2)⊗ (3⊕4)→ 3⊗ (3⊕4) 3⊗ (3⊕4)→ 3⊗7 3⊗7→ 21

The steps can be composed: let us write

e0→k ek

if e0 can be reduced to ek in k steps: that is there exist e1,e2, ...,ek−1 such that we
can derive the judgements

e0→ e1 e1→ e2 ... ek−1→ ek

This includes the case when k = 0: then ek must be the same as e0, i.e., in zero steps
any expression can reduce to itself.

In our example, by composing the above steps, we have

(1⊕2)⊗ (3⊕4)→3 21

We also write
e 6→

when no expression e′ can be found such that e→ e′.
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It is immediate to see that for any numeral n, we have n 6→, as no conclusion of
the inference rules has a numeral as the source of the transition.

To fully evaluate an expression, we need to indefinitely compute successive
derivations until eventually a final numeral is obtained that cannot be evaluated
further. We write

e→∗ n
to mean that there is some natural number k such that e→k n, i.e., e can be evaluated
to n in k steps. The relation→∗ is called the reflexive and transitive closure of→.
Note that we have, e.g., n→∗ n for any numeral n.

In our example we can derive the judgement

(1⊕2)⊗ (3⊕4)→∗ 21

Small-step operational semantics will be especially useful in Parts IV and V to
assign different semantics to non-terminating systems.

A Big-Step Operational Semantics (or Natural Semantics)

Like small-step semantics, a natural semantics is a set of inference rules, but a
complete computation is done as a single, large derivation. For this reason, a natural
semantics is sometimes called a big-step operational semantics.

Big-step semantics formally describes how the overall results of the executions are
obtained. It hides even more details than the small-step operational semantics. Like
small-step operational semantics, natural semantics shows the context in which a com-
putation step occurs, and like denotational semantics, natural semantics emphasises
that the computation of a phrase is built from the computations of its sub-phrases.

Natural semantics have the advantage of often being simpler (needing fewer
inference rules) and of often directly corresponding to an efficient implementation of
an interpreter for the language. In our running example, we disregard the individual
steps that lead to the result and focus on the final outcome, i.e., we formalise the
predicate e→∗ n. Typically, the same predicate symbol→ is used also in the case of
natural semantics. To avoid ambiguities and to not overload the notation, here, for
the sake of the running example, we use a different symbol. We define the predicate

e� n

to be read as the expression e is (eventually) evaluated to n.
The rules are reported in Figure 1.2. This time only three rules are needed, which

immediately correspond to the informal semantics we gave for numerical expressions.
We can now verify that the judgement

(1⊕2)⊗ (3⊕4)� 21

can be derived as follows:
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n� n
(num)

e0� n1 e1� n2
e0⊕ e1� n

n = n1 +n2 (sum)
e0� n1 e1� n2

e0⊗ e1� n
n = n1×n2 (prod)

Fig. 1.2: Natural semantics for numerical expressions

1� 1
(num)

2� 2
(num)

1⊕2� 3
3 = 1+2 (sum)

3� 3
(num)

4� 4
(num)

3⊕4� 7
7 = 3+4 (sum)

(1⊕2)⊗ (3⊕4)� 21
21 = 3×7 (prod)

Small-step operational semantics gives more control of the details and order
of evaluation. These properties make small-step semantics more convenient when
proving type soundness of a type system against an operational semantics. Natural
semantics can lead to simpler proofs, e.g., when proving the preservation of correct-
ness under some program transformation. Natural semantics is also very useful to
define reduction to canonical forms.

An interesting drawback of natural semantics is that semantics derivations can be
drawn only for terminating programs. The main disadvantage of natural semantics is
thus that non-terminating (diverging) computations do not have an inference tree.

We will exploit natural semantics mainly in Parts II and III of the book.

A Denotational Semantics

Differently from operational semantics, denotational semantics is concerned with
manipulating mathematical objects and not with executing programs.

In the case of expressions, the intuition is that a term represents a number (ex-
pressed in the form of a calculation). So we can choose as a semantic domain the set
of natural numbers N, and the interpretation function will then map expressions to
natural numbers.

To avoid ambiguities between pieces of syntax and mathematical objects, we
usually enclose syntactic terms within a special kind of brackets J·K that serve as a
separation. It is also common, when different interpretation functions are considered,
to use calligraphic letters to distinguish the kind of terms they apply to (one for each
syntactical category).

In our running example, we define two semantic functions:

N J·K : Nums→ N
E J·K : Exp→ N

Remark 1.3. When we study more complex languages, we will need to involve more
complex (and less familiar) domains than N. For example, as originally developed
by Strachey and Scott, denotational semantics provides the meaning of a computer
program as a function that maps input into output. To give denotations to recur-
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sively defined programs, Scott proposed working with continuous functions between
domains, specifically complete partial orders.

Notice that our choice of semantic domain has certain immediate consequences
for the semantics of our language: it implies that every expression will mean exactly
one number! Without having defined yet the interpretation functions, and contrary to
the operational semantics definitions, anyone looking at the semantics already knows
that the language is

deterministic: each expression has at most one answer;
normalising: every expression has an answer.

Giving a meaning to numerals is immediate

N JnK = n

For composite expressions, the meaning will be determined by composing the
meaning of the arguments

E JnK = N JnK
E Je0⊕ e1K = E Je0K+E Je1K
E Je0⊗ e1K = E Je0K×E Je1K

We have thus defined the interpretation function by induction on the structure of
the expressions and it is

compositional: the meaning of complex expressions is defined in terms of the
meaning of their constituents.

As an example, we can interpret our running expression:

E J(1⊕2)⊗ (3⊕4)K = E J1⊕2K×E J3⊕4K
= (E J1K+E J2K)× (E J3K+E J4K)
= (N J1K+N J2K)× (N J3K+N J4K)
= (1+2)× (3+4) = 21

Denotational semantics is best suited for sequential systems and thus exploited in
Parts II and III.

Semantic Equivalence

We have now available three different semantics for numerical expressions:

e→∗ n e� n E JeK

and we are faced with several questions:
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1. Is it true that for every expression e there exists some numeral n such that e→∗ n?
The same property, often referred to as normalisation, can be asked also for e� n,
while it is trivially satisfied by E JeK.

2. Is it true that if e→∗ n and e→∗ m we have n= m?
The same property, often referred to as determinacy, can be asked also for e� n,
while it is trivially satisfied by E JeK.

3. Is it true that e→∗ n iff e� n?
This has to do with the consistency of the semantics and the question can be posed
between any two of the three semantics we have defined.

We can also derive some intuitive relations of equivalence between expressions:

• Two expressions e0 and e1 are equivalent if for any numeral n, e0→∗ n iff e1→∗ n.
• Two expressions e0 and e1 are equivalent if for any numeral n, e0� n iff e1� n.
• Two expressions e0 and e1 are equivalent if E Je0K = E Je1K.

Of course, if we prove the consistency of the three semantics, then we can conclude
that the three notions of equivalence coincide.

Expressions with Variables

Suppose now we want to extend numerical expressions with the possibility to include
formal parameters in them, drawn from an infinite set X , ranged over by x.

e ::= x | n | e⊕ e | e⊗ e

How can we evaluate an expression like (x⊕4)⊗ y? We cannot, unless the values
assigned to x and y are known: in general, the result will depend on them.

Operationally, we must provide such information to the machine, e.g., in the
form of some memory σ : X → N that is part of the machine state. We use the
notation 〈e,σ〉 to denote the state where e is to be evaluated in the memory σ . The
corresponding small-/big-step rules for variables would then look like

〈x,σ〉 → n
n = σ(x) (var) 〈x,σ〉� n

n = σ(x) (var)

Exercise 1.1. The reader may complete the missing rules as an exercise.

Denotationally, the interpretation function needs to receive a memory as an addi-
tional argument:

E J·K : Exp→ ((X → N)→ N)

Note that this is quite different from the operational approach, where the memory
is part of the state.
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The corresponding defining equations would then look like

E JnKσ = N JnK
E JxKσ = σ(x)

E Je0⊕ e1Kσ = E Je0Kσ +E Je1Kσ

E Je0⊗ e1Kσ = E Je0Kσ ×E Je1Kσ

Semantic equivalences must then take into account all the possible memories
where expressions are evaluated. To say that e0 is denotationally equivalent to e1 we
must require that for any memory σ : X → N we have E Je0Kσ = E Je1Kσ .

Exercise 1.2. The reader is invited to restate the consistency between the various
semantics and the operational notions of equivalences between expressions taking
memories into account.

1.3 Applications of Semantics

Whatever care is taken to make a natural language description of programming
languages precise and unambiguous, there always remain some points that are open
to several different interpretations. Formal semantics can provide a useful basis
for the language design, its implementation, and the analysis and verification of
programs.

In the following we summarise some benefits for each of the above categories.

Language Design

The worst form of design errors are cases where the language behaves in a way that
is not expected and even less desired by its designers. Fixing a formal semantics
for a language is the best way of detecting weak points in the language design
itself. Starting from the natural language descriptions of the various features, subtle
ambiguities, inconsistencies, complexities and anomalies will emerge, and better
ways of dealing with each feature will be discovered.

While the presence of problems can be demonstrated by exhibiting example
programs, their absence can only be proved by exploiting a formal semantics. Opera-
tional semantics, denotational semantics and axiomatic semantics, in this order, are
increasingly sensitive tools for detecting problems in language design.

Increasingly, language designers are using semantics definitions to formalise their
creations. Famous examples include Ada [6], Scheme [17] and ML [22]. A more
recent witness is the use of Horn clauses to specify the type checker in the Java
Virtual Machine version 7.6

6 http://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf
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Implementation

Semantics can be used to validate prototype implementations of programming lan-
guages, to verify the correctness of code analysis techniques exploited in the im-
plementation, like type checking, and to certify many useful properties, such as the
correctness of compiler optimisations.

A common phenomenon is the presence of underspecified behaviour in certain
circumstances. In practice, such underspecified behaviours can reduce programs’
portability from one platform to another.

Perhaps the most significant application of operational semantics definitions is
the straightforward generation of prototypal implementations, where the behaviour
of programs can be simulated and tested, even if the underlying interpreter can
be inefficient. Denotational semantics can also provide a good starting point for
automatic language implementation. Automatic generation of implementations is not
the only way in which formal semantics can help implementors. If a formal model is
available, then hand-crafted implementations can be related to the formal semantics,
e.g., to guarantee their correctness.

Analysis and Verification

Semantics offers the main support for reasoning about programs, specifications,
implementations and their properties, both mechanically and by hand. It is the
unique means to state that an implementation conforms to a specification, or that two
programs are equivalent or that a model satisfies some property.

For example, let us consider the following OCaml-like functions:

let rec fib n = match n with
0 -> 0

| 1 -> 1
| x -> fib (x-1) + fib (x-2)

let fib n = let rec faux a b cnt = match cnt with
0 -> b

| x -> faux (a+b) a (x-1)
in faux 1 0 n

The second program offers a much more efficient version of the Fibonacci numbers
calculation (the number of recursive calls is linear in n, as opposed to the first program
where the number of recursive calls is exponential in n). If the two versions can be
proved equivalent from the functional point of view, then we can safely replace the
first version with the better-performing one.
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Synergy Between Different Semantics Approaches

It would be wrong to view different semantics styles as in opposition to each other.
They each have their uses and their combined use is more than the sum of its parts.
Roughly

• A clear operational semantics is very helpful in implementation and in proving
program and language properties.

• Denotational semantics provides the deepest insights to the language designer,
being sustained by a rich mathematical theory.

• Axiomatic semantics can lead to strikingly elegant proof systems, useful in devel-
oping as well as verifying programs.7

As discussed above, the objective of the book is to present different models of
computation, their programming paradigms, their mathematical descriptions and
some formal analysis techniques for reasoning about program properties. We shall
focus on the operational and denotational semantics.

A long-standing research topic is the relationship between the different forms of
semantic definitions. For example, while the denotational approach can be convenient
when reasoning about programs, the operational approach can drive the implementa-
tion. It is therefore of interest whether a denotational definition is equivalent to an
operational one.

In mathematical logic, one uses the concepts of soundness and completeness to
relate a logic’s proof system to its interpretation, and in semantics there are similar
notions of soundness and adequacy to relate one semantics to another.

We show how to relate different kinds of semantics and program equivalences,
reconciling whenever possible the operational, denotational and logic views by prov-
ing some relevant correspondence theorems. Moreover, we discuss the fundamental
ideas and methods behind these approaches.

The operational semantics fixes an abstract and concise operational model for the
execution of a program (in a given environment). We define the execution as a proof
in some logical system that justifies how the effect is achieved, and once we are at
this formal level it will be easier to prove properties of the program.

The denotational semantics describes an explicit interpretation function over a
mathematical domain. The interpretation function for a typical imperative language
is a mapping that, given a program, returns a function from any initial state to the
corresponding final state, if any (as programs may not terminate). We cover mostly
basic cases, without delving into the variety of options and features that are available
to the language designer.

The correspondence is well exemplified over the first two paradigms we focus on:
a simple IMPerative language called IMP, and a Higher-Order Functional Language
called HOFL. For both of them we define what are the programs and in the case of
HOFL we also define what are the infinitely many types we can handle. Then, we

7 Axiomatic semantics is mostly directed towards the programmer, but its wide application is
complicated by the fact that it is often difficult (more than denotational semantics) to give a clear
axiomatic semantics to languages that were not designed with this in mind.
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define their operational semantics, their denotational semantics and finally, to some
extent, we prove the correspondence between the two.

As explained later in more detail, in the case of the last two paradigms we
consider in the monograph, for concurrent and probabilistic systems, the denotational
semantics becomes more complex and we replace its role by suitable logics: two
systems are then considered equivalent if they satisfy exactly the same formulas
in the logic. Also the perspective of the operational semantics is shifted from the
computation of a result to the observable interactions with the environment and two
systems are considered equivalent if they exhibit the same behaviour (this equivalence
is called abstract semantics). Nicely, the behavioural equivalence induced by the
operational semantics can be shown to coincide with the logical equivalence above.

1.4 Key Topics and Techniques

1.4.1 Induction and Recursion

Proving existential statements can be done by exhibiting a specific witness, but
proving universally quantified statements is more difficult, because all the elements
must be considered (for disproof, we can again exhibit a single counterexample) and
there can be infinitely many elements to check.

The situation is improved when the elements are generated in some finitary way.
For example

• any natural number n can be obtained by taking the successor of 0 for n times;
• any well-formed program is obtained by repeated applications of the productions

of some grammar;
• any theorem derived in some logic system is obtained by applying some axioms

and inference rules to form a (finite) derivation tree;
• any computation is obtained by composing single steps.

If we want to prove non-trivial properties of a program or of a class of programs,
we usually have to use induction principles. The most general notion of induction is
the so-called well-founded induction (or Noetherian induction) and we derive from it
all the other induction principles.

In the above cases (arbitrarily large but finitely generated elements) we can exploit
the induction principle to prove a universally quantified statement by showing that

base case: the statement holds in all possible elementary cases (e.g., 0, the sen-
tences of the grammar obtained by applying productions involving
non-terminal symbols only, the basic derivations of a proof system
obtained by applying the axioms, the initial step of a computation);

inductive case: and that the statement holds in the composite cases (e.g. succ(n),
the terms of the grammar obtained by applying productions in-
volving non-terminal symbols, the derivations of a proof system
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obtained by applying an inference rule to smaller derivations, a
computation of n+1 steps, etc.), under the assumption that it holds
in any simpler case (e.g., for any k ≤ n, for any subterm, for any
smaller derivation, for any computation whose length is less than
or equal to n).

Exercise 1.3. Induction can be deceptive. Let us consider the following argument for
proving that all cats are the same colour.

Let P(n) be the proposition that: In a group of n cats, all cats are the same colour
The statement is trivially true for n = 1 (base case).
For the inductive case, suppose that the statement is true for n≤ k. Take a group

of k+1 cats: we want to prove that they are the same colour.
Align the cats along a line. Form two groups of k cats each: the first k cats in the

line and the last k cats in the line. By the inductive hypothesis, the cats in each of
the two groups are the same colour. Since the cat in the middle of the line belongs to
both groups, by transitivity all cats in the line are the same colour. Hence P(k+1) is
true.

k k

k + 1

By induction, P(n) is true for all n ∈ N. Hence, all cats are the same colour.
We know that this cannot be the case: what’s wrong with the above reasoning?

The usual proof technique for proving properties of a natural semantics definition
is induction on the height of the derivation trees that are generated from the semantics,
from which we get the special case of rule induction:

base cases: P holds for each axiom, and
inductive cases: for each inference rule, if P holds for the premises, then it holds

for the conclusion.

For proving properties of a denotational semantics, induction on the structure of
the terms is often a convenient proof strategy.

Defining the denotational semantics of a composed program by structural re-
cursion means assigning its meaning in terms of the meanings of its components.
We will see that induction and recursion are very similar: for both induction and
recursion we will need well-founded models.
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1.4.2 Semantic Domains

The choice of a suitable semantic domain is not always as easy as in the example of
numerical expressions.

For example, the semantics of programs is often formulated in a functional space,
from the domain of states to itself (i.e., a program is seen as a state transformation).
The functions we need to consider can be partial ones, if the programs can diverge.
Note that the domain of states can also be a complex structure, e.g., a state can be an
assignment of values to variables.

If we take a program which is cyclic or recursive, then we have to express these
notions at the level of the meanings, which presents some technical difficulties.

A recursive program p contains a call to itself, therefore to assign a meaning JpK
to the program p we need to solve a recursive equation of the form

JpK = f (JpK). (1.1)

In general, it can happen than such equations have zero, one or many solutions.
Solutions to recursive equations are called fixpoints.

Example 1.3. Let us consider the domain of natural numbers:

n = 2×n has only one solution: n = 0
n = n+1 has no solution
n = 1×n has many solutions: any n

Example 1.4. Let us consider the domain of sets of integers:

X = X ∩{1} has two solutions: X =∅ or X = {1}
X = N\X has no solution
X = X ∪{1} has many solutions: any X ⊇ {1}

In order to provide a general solution to this kind of problem, we resort to the
theory of complete partial orders with bottom and of continuous functions.

In the functional programming paradigm, a higher-order functional language can
use functions as arguments to other functions, i.e., spaces of functions must also be
considered as forming data types. This makes the language’s domains more complex.
Denotational semantics can be used to understand these complexities; an applied
branch of mathematics called domain theory is used to formalise the domains with
algebraic equations.

Let us consider a domain D where we interpret the elements of some data type.
The idea is that two elements x,y ∈ D are not necessarily separated, but one, say y,
can be a better version of what x is trying to approximate, written

xv y

with the intuition that y is consistent with x and is (possibly) more accurate than x.
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Concretely, an especially interesting case is when one can take two partial func-
tions f ,g and say that g is a better approximation than f if whenever f (x) is defined
then also g(x) is defined and g(x) = f (x). But g can be defined on elements on which
f is not.

Note that if we see (partial) functions as relations (sets of pairs (x, f (x))), then
the above concept boils down to set inclusion.

For example, we can progressively approximate the factorial function by taking
the sequence of partial functions

∅ ⊆ {(1,1)} ⊆ {(1,1) , (2,2)} ⊆ {(1,1) , (2,2) , (3,6)} ⊆ {(1,1) , (2,2) , (3,6) , (4,24)} ⊆ ·· ·

Now, it is quite natural to require that our notion of approximation v is reflexive,
transitive and antisymmetric: this means that our domain D is a partial order.

Often there is an element, called bottom and denoted by ⊥, which is less defined
than any other element: in our example about partial functions, the bottom element is
the partial function ∅.

When we apply a function f (determined by some program) to elements of D it is
also quite natural to require that the more accurate the input, the more accurate the
result:

xv y ⇒ f (x)v f (y)

This means that our functions of interest are monotonic.
Now suppose we are given an infinite sequence of approximations

x0 v x1 v x2 v ...v xn v ...

It seems reasonable to suppose that the sequence tends to some limit that we denote
as
⊔

n xn and moreover that mappings between data types are well behaved w.r.t.
limits, i.e., that data transformations are continuous:

f

(⊔
n

xn

)
=
⊔
n

f (xn)

Interestingly, one can prove that for a function to be continuous in several variables
jointly, it is sufficient that it be continuous in each of its variables separately.

Kleene’s fixpoint theorem ensures that when continuous functions are considered
over complete partial orders (with bottom) then a suitable least fixpoint exists, and
tells us how to compute it. The fixpoint theory is first applied to the case of IMP
semantics and then extended to handle HOFL. The case of HOFL is more complex
because we are working on a more general situation where functions are first-class
citizens.

When defining coarsest equivalences over concurrent processes, we also present a
weaker version of the fixpoint theorem by Knaster and Tarski that can be applied to
monotone functions (not necessarily continuous) over complete lattices.
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1.4.3 Bisimulation

The models we use for IMP and HOFL are not appropriate for concurrent and
interactive systems, such as the very common network-based applications: on the one
hand we want their behaviour to depend as little as possible on the speed of processes,
on the other hand we want to permit infinite computations and to differentiate among
them on the basis of the interactions they can undertake. For example, in the case of
IMP and HOFL all diverging programs are considered equivalent. The typical models
for nondeterminism and infinite computations are (labelled) transition systems. We
do not consider time explicitly, but we have to introduce nondeterminism to account
for races between concurrent processes.

In the case of interactive, concurrent systems, as represented by labelled transition
systems, the classic notion of language equivalence from finite automata theory is
not well suited as a criterion for program equivalence, because it does not account
properly for non-terminating computations and nondeterministic behaviour. To see
this, consider the two labelled transition systems below, which model the behaviour
of two different coffee machines:

p0

coin
��

p1

coffee

22

tea

ll q0

coin
pp

coin
..q1

coffee //

q2

teaoo

It is evident that any sequence of actions that is executable by the first machine
can be also executed by the second machine, and vice versa. However, from the point
of view of the interaction with the user, the two machines behave very differently:
after the introduction of the coin, the machine on the left still allows the user to
choose between a coffee and a tea, while the machine on the right leaves no choice
to the user.

We show that a suitable notion of equivalence between concurrent, interactive
systems can be defined as a behavioural equivalence called bisimulation: it takes
into account the branching structure of labelled transition systems as well as infinite
computations. Equivalent programs are represented by (initial) states which have
corresponding observable transitions leading to equivalent states. Interestingly, there
is a nice connection between fixpoint theory and the definition of the coarsest
bisimulation equivalence, called bisimilarity. Moreover, bisimilarity finds a logical
counterpart in Hennessy-Milner logic, in the sense that two systems are bisimilar
if and only if they satisfy the same Hennessy-Milner logic formulas. Beside using
bisimilarity to compare different realisations of the same system, weaker forms of
bisimilarity can be used to study the compliance between an abstract specification
and a concrete implementation.

The language that we employ in this setting is a process algebra called CCS
(Calculus of Communicating Systems). Then, we study systems whose communica-
tion structure can change during execution. These systems are called open-ended.
As our case study, we present the π-calculus, which extends CCS. The π-calculus
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is quite expressive, due to its ability to create and transmit new names, which can
represent ports, links and also session names, nonces, passwords and so on in security
applications.

1.4.4 Temporal and Modal Logics

We investigate also temporal and modal logics designed to conveniently express
properties of concurrent, interactive systems.

Modal logics were conceived in philosophy to study different modes of truth,
for example an assertion being false in the current world but possibly true in some
alternate world, or another holding always true in all worlds. Temporal logics are
an instance of modal logics for reasoning about the truth of assertions over time.
Typical temporal operators includes the possibility to assert that a property is true
sometimes in the future, or that it is always true, in all future moments. The most
popular temporal logics are LTL (Linear Temporal Logic) and CTL (Computation
Tree Logic). They have been extensively studied and used for applying formal
methods to industrial case studies and for the specification and verification of program
correctness.

We introduce the basics of LTL and CTL and then present a modal logic with
recursion, called the µ-calculus, that encompasses LTL and CTL. The definition of
the semantics of the µ-calculus exploits again the principles of domain theory and
fixpoint computation.

1.4.5 Probabilistic Systems

Finally, in the last part of the book we focus on probabilistic models, where we trade
nondeterminism for probability distributions, which we associate with choice points.

Probability theory plays a big role in modern computer science. It focuses on the
study of random events, which are central in areas such as artificial intelligence and
network theory, e.g., to model variability in the arrival of requests and predict load
distribution on servers. Probabilistic models of computation assign weight to choices
and refine nondeterministic choices with probability distributions. In interactive
systems, when many actions are enabled at the same time, the probability distribution
models the frequency with which each alternative can be executed. Probabilistic
models can also be used in conjunction with sources of nondeterminism and we
present several ways in which this can be achieved. We also present stochastic
models, where actions take place in a continuous time setting, with an exponential
distribution.

A compelling case of probabilistic systems is given by Markov chains, which
represent random processes over time. We study two kinds of Markov chains, which
differ in the way in which time is represented (discrete vs continuous) and we focus
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on homogeneous chains only, where the distribution depends on the current state of
the system, but not on the current time. For example, in some special cases, Markov
chains can be used to estimate the probability of finding the system in a given state in
the long run or the probability that the system will not change its state in some time.

By analogy with labelled transition systems we are also able to define suitable
notions of bisimulation and an analogue of Hennessy-Milner logic, called Larsen-
Skou logic. Finally, by analogy with CCS, we present a high-level language for the
description of continuous time Markov chains, called PEPA, which can be used
to define stochastic systems in a structured and compositional way as well as by
refinement from specifications. PEPA is tool supported and has been successfully
applied in many fields, e.g., performance evaluation, decision support systems and
system biology.

1.5 Chapter Contents and Reading Guide

After Chapter 2, where some notation is fixed and useful preliminaries about logical
systems, goal-oriented derivations and proof strategies are explained, the book com-
prises four main parts: the first two parts exemplify deterministic systems; the other
two model nondeterministic ones. The difference will become clear during reading.

• Computational models for imperative languages, exemplified by IMP:

– In Chapter 3 the simple imperative language IMP is introduced; its natural
semantics is defined and studied together with the induced notion of program
equivalence.

– In Chapter 4 the general principle of well-founded induction is stated and
related to other widely used induction principles, such as mathematical induc-
tion, structural induction and rule induction. The chapter is concluded with an
illustration of well-founded recursive definitions.

– In Chapter 5 the mathematical basis for denotational semantics is presented,
including the concepts and properties of complete partial orders, least upper
bounds and monotone and continuous functions. In particular this chapter
contains Kleene’s fixpoint theorem, which is used extensively in the rest of the
monograph, and the definition of the immediate consequence operator associ-
ated with a logical system, which is exploited in Chapter 6. The presentation
of Knaster-Tarski’s fixpoint is instead postponed to Chapter 11.

– In Chapter 6 the foundations introduced in Chapter 5 are exploited to define
the denotational semantics of IMP and to derive a corresponding notion of
program equivalence. The induction principles studied in Chapter 4 are then
exploited to prove the correspondence between the operational and denotational
semantics of IMP and consequently between their two induced equivalences
over processes. The chapter is concluded with the presentation of Scott’s
principle of computational induction for proving inclusive properties.

• Computational models for functional languages, exemplified by HOFL:
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– In Chapter 7 we shift from the imperative style of programming to the declara-
tive one. After presenting the λ -notation, useful for representing anonymous
functions, the higher-order functional language HOFL is introduced, where
infinitely many data types can be constructed by pairing and function type
constructors. Church type theory and Curry type theory are discussed and the
unification algorithm from Chapter 2 is used for type inference. Typed terms
are given a natural semantics called lazy, because it evaluates a parameter
of a function only if needed. The alternative eager semantics, where actual
arguments are always evaluated, is also discussed.

– In Chapter 8 we extend the theory presented in Chapter 5 to allow the construc-
tion of more complex domains, as needed by the type constructors available in
HOFL.

– In Chapter 9 the foundations introduced in Chapter 8 are exploited to define
the (lazy) denotational semantics of HOFL.

– In Chapter 10 the operational and denotational semantics of HOFL are com-
pared, by showing that the notion of program equivalence induced by the
former is generally stricter than the one induced by the latter and that they
coincide only over terms of type integer. However, it is shown that the two
semantics are equivalent w.r.t. the notion of convergence.

• Computational models for concurrent/nondeterministic/interactive languages, ex-
emplified by CCS and the π-calculus:

– In Chapter 11 we shift the focus from sequential systems to concurrent and
interactive ones. The process algebra CCS is introduced which allows the
description of concurrent communicating systems. Such systems communicate
by message passing over named channels. Their operational semantics is
defined in the small-step style, because infinite computations must be accounted
for. Communicating processes are assigned labelled transition systems by
inference rules in the SOS-style and several equivalences over such transition
systems are discussed. In particular the notion of behavioural equivalence is
put forward, in the form of bisimulation equivalence. Notably, the coarsest
bisimulation, called bisimilarity, exists, it can be characterised as a fixpoint,
it is a congruence w.r.t. the operators of CCS and it can be axiomatised. Its
logical counterpart, called Hennessy-Milner logic, is also presented. Finally,
coarser equivalences are discussed, which can be exploited to relate system
specifications with more concrete implementations by abstracting away from
internal moves.

– In Chapter 12 some logics are considered that increase the expressiveness of
Hennessy-Milner logic by defining properties of finite and infinite computa-
tions. First the temporal logics LTL and CTL are presented, and then the more
expressive µ-calculus is studied. The notion of satisfaction for µ-calculus
formulas is defined by exploiting fixpoint theory.

– In Chapter 13 the theory of concurrent systems is extended with the possibility
to communicate channel names and create new channels. Correspondingly,
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we move from CCS to the π-calculus, we define its small-step operational
semantics and we introduce several notions of bisimulation equivalence.

• Computational models for probabilistic and stochastic process calculi:

– In Chapter 14 we shift the focus from nondeterministic systems to probabilis-
tic ones. After introducing the basics of measure theory and the notions of
random process and Markov property, two classes of random processes are
studied, which differ in the way time is represented: DTMC (discrete time)
and CTMC (continuous time). In both cases, it is studied how to compute a
stationary probability distribution over the possible states and a suitable notion
of bisimulation equivalence.

– In Chapter 15, the various possibilities for defining probabilistic models
of computation with observable actions and sources of nondeterminism are
overviewed, emphasising the difference between reactive models and genera-
tive ones. Finally a probabilistic version of Hennessy-Milner logic is presented,
called Larsen-Skou logic.

– In Chapter 16 a well-known high-level language for the specification and anal-
ysis of stochastic interactive systems, called PEPA (Performance Evaluation
Process Algebra), is presented. The small-step operational semantics of PEPA
is first defined and then it is shown how to associate a CTMC with each PEPA
process.

1.6 Further Reading

One leitmotif of this monograph is the use of logical systems of inference rules.
As derivation trees tend to grow large very fast, even for small examples, we will
introduce and rely on goal-oriented derivations inspired by logic programming, as
explained in Section 2.3. A nice introduction to the subject can be found in the lecture
notes8 by Frank Pfenning [26]. The first chapters cover, in a concise but clear manner,
most of the concepts we shall exploit.

The reader interested in knowing more about the theory of partial orders and
domains is referred to (the revised edition of) the book by Davey and Priestley [5] for
a gentle introduction to the basic concepts and to the chapter by Abramsky and Jung
in the Handbook of Logic in Computer Science for a full account of the subject [1]. A
freely available document on domain theory that accounts also for the case of parallel
and nondeterministic systems is the so-called “Pisa notes” by Plotkin [29]. The
reader interested in denotational semantics methods only can then consult [35] for an
introduction to the subject and [10] for a comprehensive treatment of programming
language constructs, including different procedure call mechanisms.

There are several books on the semantics of imperative and functional lan-
guages [12, 41, 23, 24, 32, 40, 7]. For many years, we have adopted the book

8 Freely available at the time of publication.
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by Glynn Winskel [43] for the courses in Pisa, which is possibly the closest to our
approach. It covers most of the content of Parts II (IMP) and III (HOFL) and has a
chapter on CCS and modal logic (see Part IV), there discussed together with another
well-known process algebra for concurrent systems called CSP (for Communicating
Sequential Processes) and introduced by Tony Hoare. The main differences are that
we use goal-oriented derivations for logical systems (type systems and operational
semantics) and focus on the lazy semantics of HOFL, while Winskel’s book exploits
derivation trees and gives a detailed treatment of the eager semantics of HOFL. We
briefly discuss CSP in Chapter 16 as it is the basis for PEPA. Chapter 13 and Part V
are not covered in [43]. We briefly overview elementary type systems in connection
to HOFL. To deepen the study of the topic, including polymorphic and recursive
types, we recommend the books by Benjamin Pierce [27] and by John Mitchell [23].

Moving to Part IV, the main and most-cited reference for CCS is Robin Milner’s
book [20]. However, for an up-to-date presentation of CCS theory, we refer to
the very recent book by Roberto Gorrieri and Cristian Versari [11]. Both texts are
complementary to the book by Luca Aceto et al. [2], where the material is organised
to place the emphasis on verification aspects of concurrent systems and CCS is
presented as a useful formal tool. Mobility is not considered in the above texts. The
basic reference for the π-calculus is the seminal book by Robin Milner [21]. The
whole body of theory that has been subsequently developed is presented at a good
level of detail in the book by Davide Sangiorgi and David Walker [34]. Many free
tutorials on CCS and the π-calculus can also be found on the web.

Bisimulation equivalences are presented and exploited in all the above books, but
their use, as well as that of the more general concept of coinduction, spans far beyond
CCS and interactive systems. The new book by Davide Sangiorgi [33] explores the
subject from many angles and provides good insights. The algorithmic-minded reader
is also referred to the recent survey [3].

The literature on temporal and modal logics and their applications to verification
and model checking is quite vast and falls outside the scope of our book. We just point
the reader to the compact survey on the modal µ-calculus by Giacomo Lenzi [18],
which explains synthetically how LTL and CTL can be seen as sublogics of the
µ-calculus, and to the book by Christel Baier and Joost-Pieter Katoen on model
checking principles [4], where also verification of probabilistic systems is addressed.

This brings us to Part V. We think one peculiarity of this monograph is that it
groups under the same umbrella several paradigms that are often treated in separation.
This is certainly the case with Markov chains and probabilistic systems. Markov
chains are usually studied in first courses on probability for Computer Science. Their
combined use with transitions for interaction is a more advanced subject and we refer
the interested reader to the well-known book by Prakash Panangaden [25].

Finally, PEPA, where the process algebraic approach merges with the represen-
tation of stochastic systems, allowing modelling and measurement of not just the
expressiveness of processes but also their performance, from many angles. The
introductory text for PEPA principles is the book by Jane Hillston [14] possibly ac-
companied by the short presentation in [13]. For people interested in experimenting
with PEPA we refer instead to [9].
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Chapter 2
Preliminaries

A mathematician is a device for turning coffee into theorems.
(Paul Erdös)

Abstract In this chapter we fix some basic mathematical notation used in the rest
of the book and introduce the important concepts of signature, logical system and
goal-oriented derivation.

2.1 Notation

2.1.1 Basic Notation

As a general rule, we use capital letters, like D or X , to denote sets of elements, and
small letters, like d or x, for their elements, with membership relation ∈. The set of
natural numbers is denoted byN def

= {0,1,2, . . .}, the set of integer numbers is denoted

by Z def
= {. . . ,−2,−1,0,1,2, . . .} and the set of booleans by B def

= {true, false}. We

write [m,n] def
= {k | m ≤ k ≤ n} for the interval of numbers from m to n, extremes

included. If a set A is finite, we denote by |A| its cardinality, i.e., the number of its
elements. The empty set is written ∅, with |∅|= 0. We use the standard notation for
set union, intersection, difference, cartesian product and disjoint union, which are
denoted respectively by ∪, ∩, \, × and ]. We write A⊆ B if all elements in A belong
to B. We denote by ℘(A) the powerset of A, i.e., the set of all subsets of A.

An indexed set of elements is written {ei}i∈I and a family of sets is written {Si}i∈I .
Set operations are extended to families of sets by writing, e.g.,

⋃
i∈I Si and

⋂
i∈I Si. If

I is the interval set [m,n], then we write also
⋃n

i=m Si and
⋂n

i=m Si.
Given a set A and a natural number k we denote by Ak the set of sequences of k

(not necessarily distinct) elements in A. Such sequences are called strings and their
concatenation is represented by juxtaposition. We denote by A∗ =

⋃
k∈NAk the set

of all finite (possibly empty) sequences over A. Given a string w ∈ A∗ we denote
by |w| its length, i.e., the number of its elements (including repetitions). The empty
string is denoted ε , and we have |ε| = 0 and A0 = {ε} for any A. We denote by
A+ =

⋃
k>0 Ak = A∗ \{ε} the set of all finite nonempty sequences over A.
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A relation R between two sets A and B is a subset of A×B. For (a,b)∈ R we write
also aRb. A relation f ⊆ A×B can be regarded as a function if both the following
properties are satisfied:

function: ∀a ∈ A,∀b1,b2 ∈ B. (a,b1) ∈ f ∧ (a,b2) ∈ f ⇒ b1 = b2
total: ∀a ∈ A,∃b ∈ B. (a,b) ∈ f

For such a function f , we write f : A→ B and say that the set A is the domain of
f , and B is its codomain. We write f (a) for the unique element b ∈ B such that
(a,b) ∈ f , i.e., f can be regarded as the relation {(a, f (a)) | a ∈ A} ⊆ A×B. The
composition of two functions f : A→ B and g : B→C is written g◦ f : A→C, and it
is such that for any element a ∈ A it holds that (g◦ f )(a) = g( f (a)). A relation that
satisfies the “function” property, but not necessarily the “total” property, is called
partial. A partial function f from A to B is written f : A ⇀ B.

2.1.2 Signatures and Terms

A one-sorted (or unsorted) signature is a set of function symbols Σ = {c, f ,g, . . .}
such that each symbol in Σ is assigned an arity, that is the number of arguments it
takes. A symbol with arity zero is called a constant; a symbol with arity one is called
unary; a symbol with arity two is called binary; a symbol with arity three is called
ternary. For n ∈ N, we let Σn ⊆ Σ be the set of function symbols whose arity is n.

Given an infinite set of variables X = {x,y,z, . . .}, the set TΣ ,X is the set of terms
over Σ and X , i.e., the set of all and only terms generated according to the following
rules:

• each variable x ∈ X is a term (i.e., x ∈ TΣ ,X ),
• each constant c ∈ Σ0 is a term (i.e., c ∈ TΣ ,X ),
• if f ∈ Σn, and t1, . . . , tn are terms (i.e., t1, . . . , tn ∈ TΣ ,X ) then also f (t1, . . . , tn) is a

term (i.e., f (t1, . . . , tn) ∈ TΣ ,X ).

For a term t ∈ TΣ ,X , we denote by vars(t) the set of variables occurring in t, and let

TΣ ⊆ TΣ ,X be the set of terms with no variables, i.e., TΣ

def
= {t ∈ TΣ ,X | vars(t) =∅}.

Example 2.1. Take Σ = {0,succ,plus} with 0 a constant, succ unary and plus binary.
Then all of the following are terms:

• 0 ∈ TΣ

• x ∈ TΣ ,X
• succ(0) ∈ TΣ

• succ(x) ∈ TΣ ,X
• plus(succ(x),0) ∈ TΣ ,X
• plus(plus(x,succ(y)),plus(0,succ(x))) ∈ TΣ ,X

The set of variables of the above terms are respectively

• vars(0) = vars(succ(0)) =∅
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• vars(x) = vars(succ(x)) = vars(plus(succ(x),0)) = {x}
• vars(plus(plus(x,succ(y)),plus(0,succ(x)))) = {x,y}

Instead succ(plus(0),x) is not a term: can you see why?

2.1.3 Substitutions

A substitution ρ : X → TΣ ,X is a function assigning terms to variables.
Since the set of variables is infinite while we are interested only in terms with a

finite number of variables, we consider only substitutions that are defined as identity
everywhere except on a finite number of variables. Such substitutions are written

ρ = [x1 = t1 , . . . , xn = tn ]

meaning that

ρ(x) =
{

ti if x = xi
x otherwise

We denote by tρ , or sometimes by ρ(t), the term obtained from t by simultane-
ously replacing each variable x with ρ(x) in t.

Example 2.2. For example, consider the signature from Example 2.1, the term t def
=

plus(succ(x),succ(y)) and the substitution ρ
def
= [x = succ(y) , y = 0 ]. We get:

tρ = plus(succ(x),succ(y))[x = succ(y) , y = 0 ] = plus(succ(succ(y)),succ(0))

We say that the term t is more general than the term t ′ if there exists a substitution
ρ such that tρ = t ′. The “more general than” relation is reflexive and transitive, i.e.,
it defines a pre-order. Note that there are terms t and t ′, with t 6= t ′, such that t is
more general than t ′ and t ′ is more general than t.

We say that the substitution ρ is more general than the substitution ρ ′ if there
exists a substitution ρ ′′ such that for any variable x we have that ρ ′′(ρ(x)) = ρ ′(x)
(i.e., ρ(x) is more general than ρ ′(x) as witnessed by ρ ′′).

2.1.4 Unification Problem

The unification problem, in its simplest formulation (syntactic, first-order unification),
consists of finding a substitution ρ that identifies some terms pairwise.

Formally, given a set of potential equalities

G = {l1 ?
= r1, . . . , ln

?
= rn}

where li,ri ∈ TΣ ,X , we say that a substitution ρ is a solution of G if
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∀i ∈ [1,n]. liρ = riρ

The unification problem requires to find a most general solution ρ .
We say that two sets of potential equalities G and G′ are equivalent if they have

the same set of solutions.
We denote by vars(G) the set of variables occurring in G, i.e.,

vars({l1 ?
= r1, . . . , ln

?
= rn}) =

n⋃
i=1

(vars(li)∪vars(ri))

Note that the solution does not necessarily exist, and when it exists it is not necessarily
unique.

The unification algorithm takes as input a set of potential equalities G like the one
above and applies some transformations until

• either it terminates (no transformation can be applied any more) after having
transformed the set G into an equivalent set of equalities

G′ = {x1
?
= t1, . . . ,xk

?
= tk}

where x1, . . . ,xk are all distinct variables and t1, . . . , tk are terms with no occur-
rences of x1, . . . ,xk, i.e., such that {x1, . . . ,xk} ∩

⋃k
i=1 vars(ti) = ∅: the set G′

directly defines a most general solution

[x1 = t1, . . . ,xk = tk ]

to the unification problem G;
• or it fails, meaning that the potential equalities cannot be unified.

In the following we denote by Gρ the set of potential equalities obtained by
applying the substitution ρ to all terms in G. Formally

{l1 ?
= r1, . . . , ln

?
= rn}ρ = {l1ρ

?
= r1ρ, . . . , lnρ

?
= rnρ}

The unification algorithm tries to apply the following steps (the order is not
important for the result, but it may affect complexity), to transform an initial set of
potential equalities until no more steps can be applied or the algorithm fails:

delete: G∪{t ?
= t} is transformed into G

decompose: G∪ { f (t1, . . . , tm)
?
= f (u1, . . . ,um)} is transformed into G∪ {t1 ?

=

u1, . . . , tm
?
= um}

swap: G∪{ f (t1, . . . , tm)
?
= x} is transformed into G∪{x ?

= f (t1, . . . , tm)}
eliminate: G∪{x ?

= t} is transformed into G[x= t]∪{x ?
= t} if x∈ vars(G)∧x 6∈

vars(t)

conflict: G∪{ f (t1, . . . , tm)
?
= g(u1, . . . ,uh)} leads to failure if f 6= g∨m 6= h

occur check: G∪{x ?
= f (t1, . . . , tm)} leads to failure if x ∈ vars( f (t1, . . . , tm))
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Example 2.3. For example, if we start from

G = {plus(succ(x),x) ?
= plus(y,0)}

by applying rule decompose we obtain

{succ(x) ?
= y , x ?

= 0}

by applying rule eliminate we obtain

{succ(0) ?
= y , x ?

= 0}

finally, by applying rule swap we obtain

{y ?
= succ(0) , x ?

= 0}

Since no further transformation is possible, we conclude that

ρ = [y = succ(0) , x = 0 ]

is the most general unifier for G.

2.2 Inference Rules and Logical Systems

Inference rules are a key tool for defining syntax (e.g., which programs respect the
syntax, which programs are well typed) and semantics (e.g., to derive the operational
semantics by induction on the syntactic structure of programs).

Definition 2.1 (Inference rule). Let x1,x2, . . . ,xn,y be (well-formed) formulas. An
inference rule is written, using inline notation, as

r = {x1,x2, . . . ,xn︸ ︷︷ ︸
premises

} / y︸︷︷︸
conclusion

Letting X = {x1,x2, . . . ,xn}, equivalent notations are

r =
X
y

r =
x1 . . . xn

y

The meaning of such a rule r is that if we can prove all the formulas x1,x2, . . . ,xn
in our logical system, then by exploiting the inference rule r we can also derive the
validity of the formula y.

Definition 2.2 (Axiom). An axiom is an inference rule with empty premise:

r =∅/y.
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Equivalent notations are

r =
∅
y

r =
y

In other words, there are no pre-conditions for applying an axiom r, hence there
is nothing to prove in order to apply the rule: in this case we can assume y to hold.

Definition 2.3 (Logical system). A logical system is a set of inference rules R =
{ri}i∈I .

Given a logical system, we can start by deriving obvious facts using axioms and
then derive new valid formulas by applying the inference rules to the formulas that
we know to hold (used as premises). In turn, the newly derived formulas can be used
to prove the validity of other formulas.

Example 2.4 (Some inference rules). The inference rule

x ∈ E y ∈ E x⊕ y = z

z ∈ E

means that, if x and y are two elements that belong to the set E and the result of
applying the operator ⊕ to x and y gives z as a result, then z must also belong to the
set E.

The rule

2 ∈ E
is an axiom, so we know that 2 belongs to the set E.

By composing inference rules, we build derivations, which explain how a logical
deduction is achieved.

Definition 2.4 (Derivation). Given a logical system R, a derivation is written

d 
R y

where

• either d =∅/y is an axiom of R, i.e., (∅/y) ∈ R;
• or there are some derivations d1 
R x1, . . . ,dn 
R xn such that d = ({d1, . . . ,dn}/y)

and ({x1, . . . ,xn}/y) ∈ R.

The notion of derivation is obtained by putting together different steps of reasoning
according to the rules in R. We can see d 
R y as a proof that, in the formal system
R, we can derive y.

Let us look more closely at the two cases in Definition 2.4. The first case tells us
that if we know that (∅

y

)
∈ R

i.e., if we have an axiom for deriving y in our inference system R, then
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y

)

R y

is a derivation of y in R.
The second case tells us that if we have already proved x1 with derivation d1, x2

with derivation d2 and so on, i.e.,

d1 
R x1, d2 
R x2, . . . , dn 
R xn

and, in the logical system R, we have a rule for deriving y using x1, . . . ,xn as premises,
i.e., (x1, . . . ,xn

y

)
∈ R

then we can build a derivation for y as follows:({d1, . . . ,dn}
y

)

R y

Summarising all the above

• (∅/y) 
R y if (∅/y) ∈ R (axiom)
• ({d1, . . . ,dn}/y) 
R y if ({x1, . . . ,xn}/y) ∈ R and d1 
R x1, . . . ,dn 
R xn (infer-

ence)

A derivation can roughly be seen as a tree whose root is the formula y we derive
and whose leaves are the axioms we need. Correspondingly, we can define the height
of a derivation tree as follows:

height(d) def
=

{
1 if d = (∅/y)
1+max{height(d1), . . . ,height(dn)} if d = ({d1, . . . ,dn}/y)

Definition 2.5 (Theorem). A theorem in a logical system R is a well-formed formula
y for which there exists a proof, and we write 
R y.

In other words, y is a theorem in R if ∃d.d 
R y.

Definition 2.6 (Set of theorems in R). We let IR = {y | 
R y} be the set of all
theorems that can be proved in R.

We mention two main approaches to prove theorems:

• top-down or direct: we start from theorems descending from the axioms and then
prove more and more theorems by applying the inference rules to already proved
theorems;

• bottom-up or goal-oriented: we fix a goal, i.e., a theorem we want to prove, and
we try to deduce a derivation for it by applying the inference rules backwards,
until each needed premise is also proved.

In the following we will mostly follow the bottom-up approach, because we will
be given a specific goal to prove.
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Example 2.5 (Grammars as sets of inference rules). Every grammar can be presented
equivalently as a set of inference rules. Let us consider the well-known grammar for
strings of balanced parentheses. Recalling that ε denotes the empty string, we write

S ::= S S | (S) | ε

We let LS denote the set of strings generated by the grammar for the symbol S. The
translation from production to inference rules is straightforward. The first production

S ::= S S

says that given any two strings s1 and s2 of balanced parentheses, their juxtaposition
is also a string of balanced parentheses. In other words

s1 ∈ LS s2 ∈ LS
(1)

s1s2 ∈ LS

Similarly, the second production

S ::= (S)

says that we can surround with brackets any string s of balanced parentheses and get
again a string of balanced parentheses. In other words:

s ∈ LS
(2)

(s) ∈ LS

Finally, the last production says that the empty string ε is just a particular string
of balanced parentheses. In other words we have an axiom:

(3)
ε ∈ LS

Note the difference between the placeholders s,s1,s2 and the symbol ε appearing
in the rules above: the former can be replaced by any string to obtain a specific
instance of rules (1) and (2), while the latter denotes a given string (i.e., rules (1) and
(2) define rule schemes with many instances, while there is a unique instance of rule
(3)).

For example, the rule

)( ∈ LS (( ∈ LS
(1)

)((( ∈ LS

is an instance of rule (1): it is obtained by replacing s1 with )( and s2 with ((.
Of course the string )((( appearing in the conclusion does not belong to LS, but
the rule instance is perfectly valid, because it says that “)((( ∈ LS if )( ∈ LS and
(( ∈ LS”: since the premises are false, the implication is valid even if we cannot
draw the conclusion )((( ∈ LS.
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Let us see an example of valid derivation that uses some valid instances of rules
(1) and (2):

(3)
ε ∈ LS

(2)
(ε)= () ∈ LS

(2)
(()) ∈ LS

(3)
ε ∈ LS

(2)
(ε)= () ∈ LS

(1)
(())() ∈ LS

Reading the proof (from the leaves to the root): since ε ∈ LS by axiom (3), then we
know that (ε)= ()∈ LS by (2); if we apply again rule (2) we derive also (())∈ LS
and hence (())() ∈ LS by (1). In other words (())() ∈ LS is a theorem.

Let us introduce a second formalisation of the same language (balanced paren-
theses) without using inference rules. To get some intuition, suppose we want to
write an algorithm to check whether the parentheses in a string are balanced. We
can parse the string from left to right and count the number of unmatched, open
parentheses in the prefix we have parsed. So, we add 1 to the counter whenever we
find an open parenthesis and subtract 1 whenever we find a closed parenthesis. If the
counter is never negative, and it holds 0 when we have parsed the whole string, then
the parentheses in the string are balanced.

In the following we let ai denote the ith symbol of the string a. Let

f (ai) =

{
1 if ai =(
−1 if ai =)

A string of n parentheses a = a1a2 . . .an is balanced if and only if both the
following properties hold:

Property 1: ∀m ∈ [0,n] we have ∑
m
i=1 f (ai)≥ 0

Property 2: ∑
n
i=1 f (ai) = 0

In fact, ∑
m
i=1 f (ai) counts the difference between the number of open parentheses

and closed parentheses that are present in the first m symbols of the string a. Therefore,
the first property requires that in any prefix of the string a the number of open
parentheses exceeds or equals the number of closed ones; the second property
requires that the string a has as many open parentheses as closed ones.

An example is shown below for the string a = (())():

m = 1 2 3 4 5 6
am = ( ( ) ) ( )

f (am) = 1 1 −1 −1 1 −1
∑

m
i=1 f (ai) = 1 2 1 0 1 0

Properties 1 and 2 are easy to check for any string and therefore define a useful
procedure to decide whether a string belongs to our language or not.

Next, we show that the two different characterisations of the language (by infer-
ence rules and by the counting procedure) of balanced parentheses are equivalent.
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Theorem 2.1. For any string of parentheses a of length n

a ∈ LS ⇐⇒
{

∑
m
i=1 f (ai)≥ 0 m = 0,1 . . .n

∑
n
i=1 f (ai) = 0

Proof. The proof is composed of two implications that we show separately:

⇒) all the strings produced by the grammar satisfy the two properties;
⇐) any string that satisfies the two properties can be generated by the grammar.

Proof of⇒) To show the first implication, we proceed by induction over the rules:
we assume that the implication is valid for the premises and we show
that it holds for the conclusion. This proof technique is very powerful
and will be explained in detail in Chapter 4.
The two properties can be represented graphically over the cartesian
plane by taking m over the x-axis and the quantity ∑

m
i=1 f (ai) over

the y-axis. Intuitively, the graph starts at the origin; it should never
cross below the x-axis and it should end at (n,0).
Let us check that by applying any inference rule the properties 1 and
2 still hold.

Rule (1): The first inference rule corresponds to the juxtaposition
of the two graphs and therefore the result still satisfies
both properties (when the original graphs do).

Rule (2): The second rule corresponds to translating the graph up-
ward (by one unit) and therefore the result still satisfies
both properties (when the original graph does).

Rule (3): The third rule is just concerned with the empty string that
trivially satisfies the two properties.
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Since we have inspected all the inference rules, the proof of the first
implication is concluded.

Proof of⇐) We need to find a derivation for any string that satisfies the two prop-
erties. Let a be such a generic string. (We only sketch this direction
of the proof, which goes by induction over the length of the string a.)
We proceed by case analysis, considering three cases:

1. If n = 0, a = ε . Then, by rule (3) we conclude that a ∈ LS.
2. The second case is when the graph associated with a never

touches the x-axis (except for its start and end points). An exam-
ple is shown below:

In this case we can apply rule (2), because we know that the
parenthesis opened at the beginning of a is only matched by the
parenthesis at the very end of a.

3. The third and last case is when the graph touches the x-axis (at
least) once at a point (k,0) different from its start and its end. An
example is shown below:

In this case the substrings a1 . . .ak and ak+1 . . .an are also bal-
anced and we can apply the rule (1) to their derivations to prove
that a ∈ LS. ut

The last part of the proof outlines a goal-oriented strategy to build a derivation for
a given string: we start by looking for a rule whose conclusion can match the goal
we are after. If there are no alternatives, then we fail. If we have only one alternative
we need to build a derivation for its premises. If there are more alternatives than one
we can either explore all of them in parallel (breadth-first approach) or try one of
them and backtrack in case we fail (depth-first).

Suppose we want to find a proof for (())() ∈ LS. We use the notation

(())() ∈ LS ↖

to mean that we look for a goal-oriented derivation.
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1. (())() ∈ LS ↖ ε ∈ LS, (())() ∈ LS
2. (())() ∈ LS ↖ ( ∈ LS, ())() ∈ LS
3. (())() ∈ LS ↖ (( ∈ LS, ))() ∈ LS
4. (())() ∈ LS ↖ (() ∈ LS, )() ∈ LS
5. (())() ∈ LS ↖ (()) ∈ LS, () ∈ LS
6. (())() ∈ LS ↖ (())( ∈ LS, ) ∈ LS
7. (())() ∈ LS ↖ (())() ∈ LS, ε ∈ LS

Fig. 2.1: Tentative derivations for the goal (())() ∈ LS

• Rule (1) can be applied in many different ways, by splitting the string (())() in
all possible ways. We use the notation

(())() ∈ LS ↖ ε ∈ LS, (())() ∈ LS

to mean that we reduce the proof of (())() ∈ LS to those of ε ∈ LS and
(())()∈ LS. Then we have all the alternatives in Figure 2.1 to inspect. Note that
some alternatives are identical except for the order in which they list sub-goals
(1 and 7) and may require us to prove the same goal from which we started (1
and 7). For example, if option 1 is selected applying depth-first strategy without
any additional check, the derivation procedure might diverge. Moreover, some
alternatives lead to goals we won’t be able to prove (2, 3, 4, 6).

• Rule (2) can be applied in only one way:

(())() ∈ LS ↖ ())( ∈ LS

• Rule (3) cannot be applied.

We show below a successful derivation, where the empty goal is written �:

(())() ∈ LS ↖ (()) ∈ LS, () ∈ LS by applying (1)
↖ (()) ∈ LS, ε ∈ LS by applying (2) to the second goal
↖ (()) ∈ LS by applying (3) to the second goal
↖ () ∈ LS by applying (2)
↖ ε ∈ LS by applying (2)
↖ � by applying (3)

We remark that in general the problem of checking whether a certain formula
is a theorem is only semi-decidable (not necessarily decidable). In this case the
breadth-first strategy for goal-oriented derivation offers a semi-decision procedure: if
a derivation exists, then it will be found; if no derivation exists, the strategy may not
terminate.
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2.3 Logic Programming

We end this chapter by mentioning a particularly relevant paradigm based on goal-
oriented derivation: logic programming and its Prolog incarnation. Prolog exploits
depth-first goal-oriented derivations with backtracking.

Let X = {x,y, . . .} be a set of variables, Σ = { f ,g, . . .} a signature of function
symbols (with given arities), Π = {p,q, . . .} a signature of predicate symbols (with
given arities). As usual, we denote by Σn (respectively Πn) the subset of function
symbols (respectively predicate symbols) with arity n.

Definition 2.7 (Atomic formula). An atomic formula consists of a predicate symbol
p of arity n applied to n terms with variables.

For example, if p ∈Π2, f ∈ Σ2 and g ∈ Σ1, then p( f (g(x),x) , g(y)) is an atomic
formula.

Definition 2.8 (Formula). A formula is a (possibly empty) conjunction of atomic
formulas.

Definition 2.9 (Horn clause). A Horn clause is written l:−r where l is an atomic
formula, called the head of the clause, and r is a formula called the body of the
clause.

Definition 2.10 (Logic program). A logic program is a set of Horn clauses.

The variables appearing in each clause can be instantiated with any term. A goal
g is a formula whose validity we want to prove. The goal g can contain variables,
which are implicitly existentially quantified.

Unification is used to “match” the head of a clause to an atomic formula of the
goal we want to prove in the most general way (i.e., by instantiating the variables
as little as possible). Before performing unification, the variables of the clause are
renamed with fresh identifiers to avoid any clash with the variables already present
in the goal.

Suppose we are given a logic program L and a goal g= a1, . . . ,an, where a1, . . . ,an
are atomic formulas. A derivation step g↖σ ′ g′ is obtained by selecting a sub-goal
ai, a clause l:−r ∈ L and a renaming ρ such that:

• lρ:−rρ is a variant of the clause l:−r ∈ L whose variables are fresh;
• the unification problem {ai

?
= lρ} has a most general solution σ ;

• g′ def
= a1σ , . . . ,ai−1σ ,rρσ ,ai+1σ , . . . ,anσ ;

• σ ′ def
= σ|vars(ai).

If we can find a sequence of derivation steps

g↖σ1
g1↖σ2

g2 · · ·gn−1↖σn �

then we can conclude that the goal g is satisfiable and that the substitution σ
def
=

σ1 · · ·σn is a least substitution for the variables in g such that gσ is a valid theorem.
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Example 2.6 (Sum in Prolog). Let us consider the logic program:

sum(0 , y , y) :− .

sum(s(x) , y , s(z)) :− sum(x , y , z).

where sum ∈Π3, s ∈ Σ1, 0 ∈ Σ0 and x,y,z ∈ X .
Let us consider the goal sum(s(s(0)) , s(s(0)) , v) with v ∈ X .
There is no match against the head of the first clause, because 0 does not unify

with s(s(0)).
We rename x,y,z in the second clause to x′,y′,z′ and compute the unification of

sum(s(s(0)) , s(s(0)) , v) and sum(s(x′) , y′ , s(z′)). The result is the substitution

[x′ = s(0), y′ = s(s(0)), v = s(z′) ]

We then apply the substitution to the body of the clause, which will be added to
the goal:

sum(x′ , y′ , z′ )[x′ = s(0), y′ = s(s(0)), v = s(z′) ] = sum(s(0) , s(s(0)) , z′ )

If other sub-goals were initially present, which may share variables with the goal
sum(s(s(0)) , s(s(0)) , v), then the substitution should have been applied to them
too.

We write the derivation described above using the notation

sum(s(s(0)) , s(s(0)) , v) ↖v=s(z′) sum(s(0) , s(s(0)) , z′ )

where we have recorded (as a subscript of the derivation step) the substitution applied
to the variables originally present in the goal (just v in the example), to record the
least condition under which the derivation is possible.

The derivation can then be completed as follows:

sum(s(s(0)) , s(s(0)) , v) ↖v=s(z′) sum(s(0) , s(s(0)) , z′ )

↖z′=s(z′′) sum(0 , s(s(0)) , z′′ )

↖z′′=s(s(0)) �

By composing the computed substitutions we get

z′ = s(z′′) = s(s(s(0)))
v = s(z′) = s(s(s(s(0))))

This gives us a proof of the theorem

sum(s(s(0)) , s(s(0)) , s(s(s(s(0)))))
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Problems

2.1. Consider the alphabet {a,b} and the grammar

A ::= a A | a B

B ::= b | b B

1. Describe the form of the strings in the languages LA and LB.
2. Define the languages LA and LB formally.
3. Write the inference rules that correspond to the productions of the grammar.
4. Write the derivation for the string a a a b b both as a proof tree and as a goal-

oriented derivation.
5. Prove that the set of theorems associated with the inference rules coincide with

the formal definitions you gave.

2.2. Consider the alphabet {0,1}.
1. Give a context-free grammar for the set of strings that contain an even number of
0s and 1s.

2. Write the inference rules that correspond to the productions of the grammar.
3. Write the derivation for the string 0 1 1 0 0 0 both as a proof tree and as a

goal-oriented derivation.
4. Prove that your logical system characterises exactly the set of strings that contain

an even number of 0s and 1s.

2.3. Consider the signature Σ such that Σ0 = {0}, Σ1 = {s} and Σn = ∅ for any
n≥ 2.

1. Let even ∈Π1. What are the theorems of the logical system below?

(1)
even(0)

even(x)
(2)

even(s(s(x)))

2. Let odd ∈Π1.What are the theorems of the logical system below?

odd(x)
(1)

odd(s(s(x)))

3. Let leq ∈Π2. What are the theorems of the logical system below?

(1)
leq(0,x)

leq(x,y)
(2)

leq(s(x),s(y))

2.4. Consider the signature Σ such that Σ0 =N, Σ2 = {node} and Σn =∅ otherwise.
Let sum,eq ∈Π2. What are the theorems of the logical system below?

n ∈ N (1)
sum(n,n)

sum(x,n) sum(y,m)
k = n+m (2)

sum(node(x,y),k)

sum(x,n) sum(y,n)
(3)

eq(x,y)
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2.5. Consider the signature Σ such that Σ0 = {0}, Σ1 = {s} and Σn = ∅ for any
n≥ 2. Give two terms t and t ′, with t 6= t ′, such that t is more general than t ′ and t ′ is
also more general than t.

2.6. Consider the signature Σ such that Σ0 = {a}, Σ1 = { f ,g}, Σ2 = {h, l} and
Σn =∅ for any n≥ 3. Solve the unification problems below:

1. G0
def
= {x ?

= f (y),h(z,x) ?
= h(y,z),g(y) ?

= g(l(a,a))}
2. G1

def
= {x ?

= f (y),h(z,x) ?
= h(x,g(z))}

3. G2
def
= {x ?

= f (y),h(z,x) ?
= h(y, f (z)), l(y,a) ?

= l(a,z)}
4. G3

def
= {x ?

= f (y),h(y,x) ?
= h(g(a), f (g(z))), l(z,a) ?

= l(a,z)}

2.7. Extend the logic program for computing the sum with the definition of

1. a predicate prod for computing the product of two numbers;
2. a predicate pow for computing the power of a base to an exponent;
3. a predicate div that tells whether a number can be divided by another number.

2.8. Extend the logic program for computing the sum with the definition of a binary
predicate fib(N,F) that is true if F is the Nth Fibonacci number.

2.9. Suppose that a set of facts of the form parent(x,y) are given, meaning that x is a
parent of y:

1. Define a predicate sibling(X ,Y ) which holds true iff X and Y have a parent in
common.

2. Define a predicate cousin(X ,Y ) which holds true iff X and Y are cousins.
3. Define a predicate ancestor(X ,Y ) which holds true iff X is an ancestor of Y .
4. If the set of basic facts is:

parent(alice,bob) .
parent(alice,carl) .
parent(bob,diana) .
parent(bob,ella) .
parent(carl,francisco) .

which of the following goals can be derived?

?- sibling(ella,francisco).
?- sibling(ella,diana).
?- cousin(ella,francisco).
?- cousin(ella,diana).
?- ancestor(alice,ella).
?- ancestor(carl,ella).

2.10. Suppose that a set of facts of the form arc(x,y) are given to represent a directed,
acyclic graph, meaning that there is an arc from x to y:

1. Define a predicate path(X ,Y ) which holds true iff there is a path from X to Y .
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2. Suppose the acyclic requirement is violated, as in the graph

a //

��

b //

��

d //

��

f

c

@@

eoo

defined by

arc(a,b) .
arc(a,c) .
arc(b,c) .
arc(b,d) .
arc(c,d) .
arc(d,e) .
arc(d,f) .
arc(e,c) .

Does a goal-oriented derivation for a query, such as the one below, necessarily
lead to the empty goal? Why?

?- path(a,f).

2.11. Consider the Horn clauses that correspond to the following statements:

1. All jumping creatures are green.
2. All small jumping creatures are Martians.
3. All green Martians are intelligent.
4. Ngtrks is small and green.
5. Pgvdrk is a jumping Martian.

Who is intelligent?1

1 Taken from http://www.slideshare.net/SergeiWinitzki/prolog-talk.



Part II
IMP: a Simple Imperative Language



This part focuses on models for sequential computations that are associated with IMP,
a simple imperative language. The syntax and natural semantics of IMP are studied
in Chapter 3, while its denotational semantics is presented in Chapter 6, where it is
also reconciled with the operational semantics. Chapter 4 explains several induction
principles exploited to prove properties of programs and semantics. Chapter 5 fixes
the mathematical basis of denotational semantics. The concepts in Chapters 4 and 5
are extensively used in Chapter 6 and in the rest of the monograph.



Chapter 3
Operational Semantics of IMP

Programs must be written for people to read, and only
incidentally for machines to execute. (H. Abelson and
G. Sussman)

Abstract This chapter introduces the formal syntax and operational semantics of a
simple, structured imperative language called IMP, with static variable allocation and
no sophisticated declaration constructs for data types, functions, classes, methods
and the like. The operational semantics is defined in the natural style and it assumes
an abstract machine with a very basic form of memory to associate integer values
with variables. The operational semantics is used to derive a notion of program
equivalence and several examples of (in)equivalence proofs are shown.

3.1 Syntax of IMP

The IMP programming language is a simple imperative language (e.g., it can be seen
as a bare-bones version of the C language) with only three data types:

int: the set of integer numbers, ranged over by metavariables m,n, ...

Z= {...,−2,−1,0,1,2, ...}

bool: the set of boolean values, ranged over by metavariables u,v, ...

B= {true, false}

locations: the (denumerable) set of memory locations (we consider programs that
use a finite number of locations and we assume there are enough loca-
tions available for any program), ranged over by metavariables x,y, ...
We shall use the terms location, variable and identifier interchangeably.

Loc locations

The grammar for IMP comprises three syntactic categories:

Aexp: Arithmetic expressions, ranged over by a,a′, ...

© Springer International Publishing Switzerland 2017
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Bexp: Boolean expressions, ranged over by b,b′, ...
Com : Commands, ranged over by c,c′, ...

Definition 3.1 (IMP syntax). The following productions define the syntax of IMP:

a ∈ Aexp ::= n | x | a0 +a1 | a0−a1 | a0×a1

b ∈ Bexp ::= v | a0 = a1 | a0 ≤ a1 | ¬b | b0∨b1 | b0∧b1

c ∈Com ::= skip | x := a | c0;c1 | if b then c0 else c1 | while b do c

where we recall that n is an integer number, v a boolean value and x a location.

IMP is a very simple imperative language and there are several constructs we
deliberately omit. For example we omit other common conditional statements, such as
switch, and other cyclic constructs, such as repeat. Moreover IMP commands impose
a structured flow of control, i.e., IMP has no labels, no goto statements, no break
statements, no continue statements. Other things which are missing and are difficult
to model are those concerned with modular programming. In particular, we have no
procedures, no modules, no classes, no types. Since IMP does not include variable
declarations, ambients, procedures and blocks, memory allocation is essentially static
and finite, except for the possibility of handling integers of any size. Of course, IMP
has no concurrent programming construct.

3.1.1 Arithmetic Expressions

An arithmetic expression can be an integer number, or a location, a sum, a difference
or a product. We notice that we do not have division, because it can be undefined (e.g.,
7/0) or give different values (e.g., 0/0) so that its use would introduce unnecessary
complexity.

3.1.2 Boolean Expressions

A boolean expression can be a logical value v, or the equality of an arithmetic
expression with another, whether an arithmetic expression is less than or equal to
another one, a negation, a logical conjunction or disjunction.

To keep the notation compact, in the following we will take the liberty of writing
boolean expressions such as x 6= 0 in place of ¬(x = 0) and x > 0 in place of 1≤ x
or (0≤ x)∧¬(x = 0).



3.1 Syntax of IMP 55

3.1.3 Commands

A command can be skip, i.e. a command which does nothing, or an assignment,
where we have that an arithmetic expression is evaluated and the value is assigned to
a location; we can also have the sequential execution of two commands (one after the
other); an if-then-else with the obvious meaning: we evaluate a boolean expression
b, if it is true we execute c0 and if it is false we execute c1. Finally we have a while
statement, which is a command that keeps executing c until b becomes false.

3.1.4 Abstract Syntax

The notation above gives the so-called abstract syntax, in that it simply says how to
build up new expressions and commands but it is ambiguous for parsing a string. It
is the job of the concrete syntax to provide enough information through parentheses
or orders of precedence between operation symbols for a string to parse uniquely.
It is helpful to think of a term in the abstract syntax as a specific parse tree of the
language.

Example 3.1 (Valid expressions).

(while b do c1) ; c2 is a valid command;
while b do (c1 ; c2) is a valid command;
while b do c1 ; c2 is not a valid command, because it is ambiguous.

In the following we will assume that enough parentheses have been added to
resolve any ambiguity in the syntax. Then, given any formula of the form a ∈ Aexp,
b ∈ Bexp or c ∈Com, the process to check whether this formula is a “theorem” is
deterministic (no backtracking is needed).

Example 3.2 (Validity check). Let us consider the formula:

if (x = 0) then (skip) else (x := (x−1)) ∈Com

We can prove its validity by the following (deterministic) derivation, where we write
↖∗ to mean that several derivation steps are grouped into one for brevity:

if(x = 0) then(skip) else(x := (x−1)) ∈Com ↖ x = 0 ∈ Bexp, skip ∈Com,

x := (x−1) ∈Com

↖ x ∈ Aexp, 0 ∈ Aexp, skip ∈Com,

x := (x−1) ∈Com

↖∗ x−1 ∈ Aexp

↖ x ∈ Aexp,1 ∈ Aexp

↖∗ �
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3.2 Operational Semantics of IMP

3.2.1 Memory State

In order to define the evaluation of an expression or the execution of a command, we
need to handle the state of the machine which is going to execute the IMP statements.
Beside expressions to be evaluated and commands to be executed, we also need to
record in the state some additional elements such as values and stores. To this aim,
we introduce the notion of memory:

σ ∈ Σ = (Loc→ Z)

A memory σ is an element of the set Σ which contains all the functions from locations
to integer numbers. A particular σ is just a function from locations to integer numbers
so it is a function which associates with each location x the value σ(x) that x stores.

Since Loc is an infinite set, things can be complicated: handling functions from
an infinite set is not a good idea for a model of computation. Although Loc is large
enough to store all the values that are manipulated by expressions and commands, the
functions we are interested in are functions which are almost everywhere 0, except
for a finite subset of memory locations.

If, for instance, we want to represent a memory such that the location x contains
the value 5 and the location y the value 10 and elsewhere is stored 0, we write:

σ = (5�x, 10�y)

In this way we can represent any interesting memory by a finite set of pairs.
We let () denote the memory such that all locations are assigned the value 0.

Definition 3.2 (Memory update). Given a memory σ , we denote by σ [n/x] the
memory where the value of x is updated to n, i.e. such that

σ [n/x](y) =
{

n if y = x
σ(y) if y 6= x

Note that σ [n/x][
m/x] = σ [m/x]. In fact

σ [n/x][
m/x](y) =

{
m if y = x
σ [n/x](y) = σ(y) if y 6= x

Moreover, when x 6= y, then the order of updates is not important, i.e., σ [n/x][
m/y] =

σ [m/y][
n/x]. For this reason, we often use the more compact notation σ [n/x,

m /y].
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3.2.2 Inference Rules

Now we are going to give the operational semantics of IMP using a logical system.
It is called “big-step” semantics (see Section 1.2) because it leads to the result in one
single proof.

We are interested in three kinds of well-formed formulas:

Arithmetic expressions: The evaluation of an element a∈ Aexp in a given memory
σ results in an integer number.

〈a,σ〉 → n

Boolean expressions: The evaluation of an element b∈ Bexp in a given memory
σ results in either true or false.

〈b,σ〉 → v

Commands: The evaluation of an element c ∈Com in a given memory
σ leads to an updated final state σ ′.

〈c,σ〉 → σ
′

Next we show each inference rule and comment on it.

3.2.2.1 Inference Rules for Arithmetic Expressions

We start with the rules about arithmetic expressions.

(num)
〈n,σ〉 → n

(3.1)

The axiom 3.1 (num) is trivial: the evaluation of any numerical constant n (seen
as syntax) results in the corresponding integer value n (read as an element of the
semantic domain) no matter which σ .

(ide)
〈x,σ〉 → σ(x)

(3.2)

The axiom 3.2 (ide) is also quite intuitive: the evaluation of an identifier x in the
memory σ results in the value stored in x.

〈a0,σ〉 → n0 〈a1,σ〉 → n1
n = n0 +n1 (sum)

〈a0 +a1,σ〉 → n
(3.3)



58 3 Operational Semantics of IMP

The rule 3.3 (sum) has several premises: the evaluation of the syntactic expression
a0 +a1 in σ returns a value n that corresponds to the arithmetic sum of the values n0
and n1 obtained after evaluating, respectively, a0 and a1 in σ . Note that we exploit
the side condition n = n0 + n1 to indicate the relation between the target n of the
conclusion and the targets of the premises. We present an equivalent, but more
compact, version of the rule (sum), where the target of the conclusion is obtained as
the sum of the targets of the premises. In the following we shall adopt the second
format (3.4).

〈a0,σ〉 → n0 〈a1,σ〉 → n1
(sum)

〈a0 +a1,σ〉 → n0 +n1
(3.4)

We remark on the difference between the two occurrences of the symbol + in the
rule: in the source of the conclusion (i.e., a0 + a1) it denotes a piece of syntax, in
the target of the conclusion (i.e., n0 +n1) it denotes a semantic operation. To avoid
any ambiguity we could have introduced different symbols in the two cases, but we
have preferred to overload the symbol and keep the notation simpler. We hope the
reader is expert enough to assign the right meaning to each occurrence of overloaded
symbols by looking at the context in which they appear.

The way we read this rule is very interesting because, in general, if we want to
evaluate the lower part we have to go up, evaluate the upper part and then compose
the results and finally go down again to draw the conclusion:

In this case we suppose we want to evaluate, in the memory σ , the arithmetic
expression a0 +a1. We have to evaluate a0 in the same memory σ and get n0, then
we have to evaluate a1 within the same memory σ to get n1 and then the final result
will be n0 +n1. Note that the same memory σ is duplicated and distributed to the
two evaluations of a0 and a1, which may occur independently in any order.

This kind of mechanism is very powerful because we deal with more proofs at
once. First, we evaluate a0. Second, we evaluate a1. Then, we put it all together. If
we need to evaluate several expressions on a sequential machine we have to deal
with the issue of fixing the order in which to proceed. On the other hand, in this case,
using a logical language we just model the fact that we want to evaluate a tree (an
expression) which is a tree of proofs in a very simple way and make explicit that the
order is not important.
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The rules for the remaining arithmetic expressions are similar to the one for sum.
We report them for completeness, but do not comment on them:

〈a0,σ〉 → n0 〈a1,σ〉 → n1
(dif)

〈a0−a1,σ〉 → n0−n1
(3.5)

〈a0,σ〉 → n0 〈a1,σ〉 → n1
(prod)

〈a0×a1,σ〉 → n0×n1
(3.6)

3.2.2.2 Inference Rules for Boolean Expressions

The rules for boolean expressions are also similar to the previous ones and need no
particular comment, except for noting that the premises of rules (equ) and (leq) refer
to judgements of arithmetic expressions:

(bool)
〈v,σ〉 → v

(3.7)

〈a0,σ〉 → n0 〈a1,σ〉 → n1
(equ)

〈a0 = a1,σ〉 → (n0 = n1)
(3.8)

〈a0,σ〉 → n0 〈a1,σ〉 → n1
(leq)

〈a0 ≤ a1,σ〉 → (n0 ≤ n1)
(3.9)

〈b,σ〉 → v
(not)

〈¬b,σ〉 → ¬v
(3.10)

〈b0,σ〉 → v0 〈b1,σ〉 → v1
(or)

〈b0∨b1,σ〉 → (v0∨ v1)
(3.11)

〈b0,σ〉 → v0 〈b1,σ〉 → v1
(and)

〈b0∧b1,σ〉 → (v0∧ v1)
(3.12)
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3.2.2.3 Inference Rules for Commands

Next, we move to the inference rules for commands.

(skip)
〈skip,σ〉 → σ

(3.13)

The rule 3.13 (skip) is very simple: it leaves the memory σ unchanged.

〈a,σ〉 → m
(assign)

〈x := a,σ〉 → σ [m/x]
(3.14)

The rule 3.14 (assign) exploits the assignment operation to update σ : we recall
that σ [m/x] is the same memory as σ except for the value assigned to x (m instead of
σ(x)). Note that the premise refers to the judgement of an arithmetic expression:

〈c0,σ〉 → σ
′′ 〈c1,σ

′′〉 → σ
′
(seq)

〈c0;c1,σ〉 → σ
′ (3.15)

The rule 3.15 (seq) for the sequential composition (concatenation) of commands
is quite interesting. We start by evaluating the first command c0 in the memory σ .
As a result we get an updated memory σ ′′ which we use for evaluating the second
command c1. In fact the order of evaluation of the two commands is important and it
would not make sense to evaluate c1 in the original memory σ , because the effects of
executing c0 would be lost. Finally, the memory σ ′ obtained by evaluating c1 in σ ′′

is returned as the result of evaluating c0;c1 in σ .
The conditional statement requires two different rules; which is used depends on

the evaluation of the condition b (they are mutually exclusive):

〈b,σ〉 → true 〈c0,σ〉 → σ
′
(iftt)

〈if b then c0 else c1,σ〉 → σ
′ (3.16)

〈b,σ〉 → false 〈c1,σ〉 → σ
′
(ifff)

〈if b then c0 else c1,σ〉 → σ
′ (3.17)

The rule 3.16 (iftt) checks that b evaluates to true and then returns as result
the memory σ ′ obtained by evaluating the command c0 in σ . On the contrary, the
rule 3.17 (ifff) checks that b evaluates to false and then returns as result the memory
σ ′ obtained by evaluating the command c1 in σ .

Also the while statement requires two different rules; which is used depends on
the evaluation of the guard b; they are mutually exclusive:
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〈b,σ〉 → true 〈c,σ〉 → σ
′′ 〈while b do c,σ ′′〉 → σ

′
(whtt)

〈while b do c,σ〉 → σ
′ (3.18)

〈b,σ〉 → false
(whff)

〈while b do c,σ〉 → σ
(3.19)

The rule 3.18 (whtt) applies to the case where the guard evaluates to true: we need
to compute the memory σ ′′ obtained by the evaluation of the body c in σ and then to
iterate the evaluation of the cycle over σ ′′.

The rule 3.19 (whff) applies to the case where the guard evaluates to false: then
the cycle terminates and the memory σ is returned unchanged.

Remark 3.1. There is an important difference between the rule 3.18 and all the other
inference rules we have encountered so far. All the other rules take as premises
formulas that are “smaller in size” than their conclusions. This fact allows us to
decrease the complexity of the atomic goals to be proved as the derivation proceeds
further, until we have basic formulas to which axioms can be applied. The rule 3.18
is different because it recursively uses as a premise a formula as complex as its
conclusion. This justifies the fact that a while command can cycle indefinitely,
without terminating.

The set of all inference rules above defines the operational semantics of IMP.
Formally, they induce a relation that contains all the pairs input-result, where the
input is the expression/command together with the initial memory and the result is
the corresponding evaluation:

→⊆ (Aexp×Σ ×Z)∪ (Bexp×Σ ×B)∪ (Com×Σ ×Σ)

We will see later that the computation is deterministic, in the sense that given any
expression/command and any memory as input there is at most one result (exactly
one in the case of arithmetic and boolean expressions).

3.2.3 Examples

Example 3.3 (Semantic evaluation of a command). Let us consider the (extra-
bracketed) command

c def
= (x := 0) ; ( while (0≤ y) do ( (x := ((x+(2× y))+1)) ; (y := (y−1)) ) )

To improve readability and without introducing too much ambiguity, we can write
it as follows:
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c def
= x := 0 ; while 0≤ y do ( x := x+(2× y)+1 ; y := y−1 )

or exploiting the usual convention for indented code, as

c def
= x := 0 ;

while 0≤ y do (
x := x+(2× y)+1 ;
y := y−1

)

Without too much difficulty, the experienced reader can guess the relation between
the value of y at the beginning of the execution and that of x at the end of the execution:
the program computes the square of (the value initially stored in) y plus 1 (when
y≥ 0) and stores it in x. In fact, by exploiting the well-known equalities 02 = 0 and
(n+1)2 = n2 +2n+1, the value of (y+1)2 is computed as the sum of the first y+1
odd numbers ∑

y
i=0(2i+1). For example, for y = 3 we have 42 = 1+3+5+7 = 16.

We report below the proof of well-formedness of the command, as a witness that
c respects the syntax of IMP. (Of course the inference rules used in the derivation are
those associated with the productions of the grammar of IMP.)

x 0

x := 0

0 y

0≤ y

x

x

2 y

2× y

a1
def
= (x+(2× y)) 1

a def
= ((x+(2× y))+1)

c3
def
= (x := ((x+(2× y))+1))

y

y 1

y−1

c4
def
= (y := (y−1))

c2
def
= ((x := ((x+(2× y))+1));(y := (y−1)))

c1
def
= (while(0≤ y)do((x := ((x+(2× y))+1));(y := (y−1))))

c def
= ((x := 0);(while(0≤ y)do((x := ((x+(2× y))+1));(y := (y−1)))))

We can summarise the above proof as follows, introducing several shorthands to
refer to some subterms of c that will be useful later:

x := 0;while0≤ ydo(x :=

a

a1

x+(2× y)+1
c3

;y := y−1
c4

)

c2

c1

c
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To find the semantics of c in a given memory we proceed in a goal-oriented
fashion. For instance, we take the well-formed formula

〈
c,
(

27/x,
2 /y
)〉
→ σ , with σ

unknown, and check whether there exists a memory σ such that the formula becomes
a theorem. This is equivalent to finding an answer to the following question: “given
the initial memory (27/x,

2 /y) and the command c to be executed, can we find a
derivation that leads to some memory σ?” By answering in the affirmative, we would
have a proof of termination for c and would establish the content of the memory at
the end of the computation.

To convince the reader that the notation for goal-oriented derivations introduced
in Section 2.3 is more effective than the tree-like notation, we first show the proof
in the tree-like notation: the goal to prove is the root (situated at the bottom) and
the “pieces” of derivation are added on top. As the tree rapidly grows large, we split
the derivation into smaller pieces that are proved separately. We use “?” to mark the
missing parts of the derivations:

num
〈0,
(27/x,

2 /y
)
〉 → 0

assign
〈x := 0,

(27/x,
2 /y
)
〉 →

(27/x,
2 /y
)[0/x

]
= σ1

?

〈c1,σ1〉 → σ
seq

〈c,
(27/x,

2 /y
)
〉 → σ

Note that c1 is a cycle, therefore we have two possible rules that can be applied,
depending on the evaluation of the guard. We only show the successful derivation,
recalling that σ1 =

(
27/x,

2 /y
)[

0/x
]
=
(

0/x,
2 /y
)
:

num
〈0,σ1〉 → 0

ide
〈y,σ1〉 → σ1(y) = 2

leq
〈0≤ y,σ1〉 → (0≤ 2) = true

?

〈c2,σ1〉 → σ2

?

〈c1,σ2〉 → σ

whtt
〈c1,σ1〉 → σ

Next we need to prove the goals 〈c2,
(

0/x,
2 /y
)
〉 → σ2 and 〈c1,σ2〉 → σ . Let us

focus on 〈c2,σ1〉 → σ2 first:

?

〈a1,
(0/x,

2 /y
)
〉 → m′

num
〈1,
(0/x,

2 /y
)
〉 → 1

sum
〈a,
(0/x,

2 /y
)
〉 → m = m′+1

assign
〈c3,

(0/x,
2 /y
)
〉 →

(0/x,
2 /y
)
[m/x] = σ3

?

〈y−1,σ3〉 → m′′
assign

〈c4,σ3〉 → σ3

[
m′′/y

]
= σ2

seq
〈c2,

(0/x,
2 /y
)
〉 → σ2

We show separately the details for the pending derivations of 〈a1,
(

0/x,
2 /y
)
〉→m′

and 〈y−1,σ3〉 → m′′:
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ide
〈x,
(0/x,

2 /y
)
〉 → 0

num
〈2,
(0/x,

2 /y
)
〉 → 2

ide
〈y,
(0/x,

2 /y
)
〉 → 2

prod
〈2× y,

(0/x,
2 /y
)
〉 → m′′′ = 2×2 = 4

sum
〈a1,

(0/x,
2 /y
)
〉 → m′ = 0+4 = 4

Since m′ = 4, this means that m = m′+1 = 5 and hence σ3 =
(

0/x,
2 /y
)[

5/x
]
=(

5/x,
2 /y
)
.

ide
〈y,
(

5/x,
2 /y

)
〉 → 2

num
〈1,
(

5/x,
2 /y

)
〉 → 1

dif
〈y−1,

(
5/x,

2 /y

)
〉 → m′′ = 2−1 = 1

Since m′′= 1 we know that σ2 =
(

5/x,
2 /y
)[

m′′/y

]
=
(

5/x,
2 /y
)[

1/y
]
=
(

5/x,
1 /y
)
.

Next we prove 〈c1,
(

5/x,
1 /y
)
〉→ σ , this time omitting some details (the derivation

is analogous to the one just seen):

...
leq

〈0≤ y,
(

5/x,
1 /y

)
〉 → true

...
seq

〈c2,
(

5/x,
1 /y

)
〉 →

(8/x,
0 /y
)
= σ4

?

〈c1,σ4〉 → σ

whtt
〈c1,

(
5/x,

1 /y

)
〉 → σ

Hence σ4 =
(

8/x,
0 /y
)

and next we prove 〈c1,
(

8/x,
0 /y
)
〉 → σ :

...
leq

〈0≤ y,
(8/x,

0 /y
)
〉 → true

...
seq

〈c2,
(8/x,

0 /y
)
〉 →

(9/x,
−1 /y

)
= σ5

?

〈c1,σ5〉 → σ

whtt
〈c1,

(8/x,
0 /y
)
〉 → σ

Hence σ5 =
(

9/x,
−1 /y

)
. Finally

...
leq

〈0≤ y,
(9/x,

−1 /y
)
〉 → false

whff
〈c1,

(9/x,
−1 /y

)
〉 →

(9/x,
−1 /y

)
= σ

Summing up all the above, we have proved the theorem

〈c,
(27/x,

2 /y
)
〉 →

(9/x,
−1 /y

)
.
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It is evident that as the proof tree grows larger it gets harder to paste the different
pieces of the proof together. We now show the same proof as a goal-oriented deriva-
tion, which should be easier to follow. To this aim, we group several derivation steps
into a single one (written↖∗) omitting trivial steps:

〈c,
(27/x,

2 /y
)
〉 → σ ↖ 〈x := 0,

(27/x,
2 /y
)
〉 → σ1, 〈c1,σ1〉 → σ

↖
σ1=(27/x,2/y)[n/x]

〈0,
(27/x,

2 /y
)
〉 → n, 〈c1,

(27/x,
2 /y
)
[n/x]〉 → σ

↖n=0, σ1=(0/x,2/y) 〈c1,
(0/x,

2 /y
)
〉 → σ

↖ 〈0≤ y,
(0/x,

2 /y
)
〉 → true,

〈c2,
(0/x,

2 /y
)
〉 → σ2, 〈c1,σ2〉 → σ

↖ 〈0,
(0/x,

2 /y
)
〉 → n1, 〈y,

(0/x,
2 /y
)
〉 → n2,

n1 ≤ n2, 〈c2,
(0/x,

2 /y
)
〉 → σ2, 〈c1,σ2〉 → σ

↖∗n1=0, n2=2 〈c3,
(0/x,

2 /y
)
〉 → σ3, 〈c4,σ3〉 → σ2,

〈c1,σ2〉 → σ

↖
σ3=(0/x,2/y)[m/x]

〈x+(2× y)+1,
(0/x,

2 /y
)
〉 → m,

〈c4,
(0/x,

2 /y
)
[m/x]〉 → σ2, 〈c1,σ2〉 → σ

↖∗m=0+(2×2)+1=5, σ3=(5/x,2/y)
〈c4,

(
5/x,

2 /y

)
〉 → σ2, 〈c1,σ2〉 → σ

↖∗
σ2=(5/x,2/y)[1/y]=(5/x,1/y)

〈c1,
(

5/x,
1 /y

)
〉 → σ

↖∗
σ4=(5/x,1/y)[8/x][0/y]=(8/x,0/y)

〈c1,
(8/x,

0 /y
)
〉 → σ

↖∗
σ5=(8/x,0/y)[9/x][−1/y]=(9/x,−1/y)

〈c1,
(9/x,

−1 /y
)
〉 → σ

↖
σ=(9/x,−1/y) 〈0≤ y,

(9/x,
−1 /y

)
〉 → false

↖∗ �

There are commands c and memories σ such that there is no σ ′ for which we can
find a proof of 〈c,σ〉 → σ ′. We use the notation below to denote such cases:

〈c,σ〉 6→ iff ¬∃σ ′.〈c,σ〉 → σ
′

The condition ¬∃σ ′.〈c,σ〉 → σ ′ can be written equivalently as ∀σ ′.〈c,σ〉 6→ σ ′.

Example 3.4 (Non-termination). Let us consider the command

c def
= while true do skip

Given σ , the only possible derivation goes as follows:
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〈c,σ〉 → σ
′ ↖ 〈true,σ〉 → true, 〈skip,σ〉 → σ1, 〈c,σ1〉 → σ

′

↖ 〈skip,σ〉 → σ1, 〈c,σ1〉 → σ
′

↖σ1=σ 〈c,σ〉 → σ
′

After a few steps of derivation we reach the same goal from which we started and
there are no alternatives to try!

In this case, we can prove that 〈c,σ〉 6→. We proceed by contradiction, assuming
there exists σ ′ for which we can find a (finite) derivation d for 〈c,σ〉 → σ ′. Let d be
the derivation sketched below:

〈c,σ〉 → σ
′ ↖ 〈true,σ〉 → true, 〈skip,σ〉 → σ1, 〈c,σ1〉 → σ

′

...

(∗)↖ 〈c,σ〉 → σ
′

...

↖ �

We have marked by (∗) the last occurrence of the goal 〈c,σ〉 → σ ′. But this leads
to a contradiction, because the next step of the derivation can only be obtained by
applying rule (whtt) and therefore it must lead to another instance of the original
goal.

3.3 Abstract Semantics: Equivalence of Expressions and
Commands

In the same way as we can write different expressions denoting the same value, we
can write different programs for solving the same problem. For example we are
used to not distinguishing between say 2+2 and 2×2 because both evaluate to 4.
Similarly, would you distinguish between, say, x := 1;y := 0 and y := 0;x := y+1?
So a natural question arises: when are two programs “equivalent”? The equivalence
between two commands is an important issue because it allows, e.g., to replace a
program with an equivalent but more efficient one. Informally, two programs are
equivalent if they behave in the same way. But can we make this idea more precise?

Since the evaluation of a command depends on the memory, two equivalent
programs must behave the same w.r.t. any initial memory. For example the two
commands x := 1 and x := y+1 assign the same value to x only when evaluated in a
memory σ such that σ(y) = 0, so that it wouldn’t be safe to replace one with the other
in an arbitrary program. Moreover, we must take into account that commands may
diverge when evaluated with a certain memory, such as while x 6= 0 do x := x−1
when evaluated in a store σ such that σ(x)< 0. We will call abstract semantics the
notion of behaviour w.r.t. which we will compare programs for equivalence.
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The operational semantics offers a straightforward abstract semantics: two pro-
grams are equivalent if they result in the same memory when evaluated over the same
initial memory.

Definition 3.3 (Equivalence of expressions and commands). We say that the arith-
metic expressions a1 and a2 are equivalent, written a1 ∼ a2, if and only if for any
memory σ they evaluate in the same way. Formally

a1 ∼ a2 iff ∀σ ,n.( 〈a1,σ〉 → n ⇔ 〈a2,σ〉 → n )

We say that the boolean expressions b1 and b2 are equivalent, written b1 ∼ b2, if
and only if for any memory σ they evaluate in the same way. Formally

b1 ∼ b2 iff ∀σ ,v.( 〈b1,σ〉 → v ⇔ 〈b2,σ〉 → v )

We say that the commands c1 and c2 are equivalent, written c1 ∼ c2, if and only if
for any memory σ they evaluate in the same way. Formally

c1 ∼ c2 iff ∀σ ,σ ′.( 〈c1,σ〉 → σ
′ ⇔ 〈c2,σ〉 → σ

′ )

Note that if the evaluation of 〈c1,σ〉 diverges there is no σ ′ such that 〈c1,σ〉→ σ ′.
Then, when c1 ∼ c2, the double implication prevents 〈c2,σ〉 from converging. As an
easy consequence, any two programs that diverge for all σ are equivalent.

3.3.1 Examples: Simple Equivalence Proofs

The first example we show is concerned with fully specified programs that operate
on unspecified memories.

Example 3.5 (Equivalent commands). Let us try to prove that the following two
commands are equivalent:

c1
def
= while x 6= 0 do x := 0

c2
def
= x := 0

It is immediate to prove that

∀σ .〈c2,σ〉 → σ
′ = σ [0/x]

Hence σ and σ ′ can differ only for the value stored in x. In particular, if σ(x) = 0
then σ ′ = σ .

The evaluation of c1 on σ depends on σ(x): if σ(x) = 0 we must apply the
rule 3.19 (whff), otherwise the rule 3.18 (whtt) must be applied. Since we do not
know the value of σ(x), we consider the two cases separately. The corresponding
hypotheses are called path conditions and outline a very important technique for the
symbolic analysis of programs.
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Case σ(x) 6= 0) Let us inspect a possible derivation for 〈c1,σ〉→ σ ′. Since σ(x) 6=
0 we select the rule (whtt) at the first step:

〈c1,σ〉 → σ
′ ↖ 〈x 6= 0,σ〉 → true, 〈x := 0,σ〉 → σ1,

〈c1,σ1〉 → σ
′

↖∗
σ1=σ[0/x]

〈c1,σ
[0/x

]
〉 → σ

′

↖
σ ′=σ[0/x] 〈x 6= 0,σ

[0/x
]
〉 → false

↖∗ σ
[0/x

]
(x) = 0

↖ �

Case σ(x) = 0) Let us inspect a derivation for 〈c1,σ〉 → σ ′. Since σ(x) = 0 we
select the rule (whff) at the first step:

〈c1,σ〉 → σ
′ ↖σ ′=σ 〈x 6= 0,σ〉 → false

↖∗ σ(x) = 0
↖ �

Finally, we observe the following:

• If σ(x) = 0, then
{
〈c1,σ〉 → σ

〈c2,σ〉 → σ [0/x] = σ

• Otherwise, if σ(x) 6= 0, then
{
〈c1,σ〉 → σ [0/x]
〈c2,σ〉 → σ [0/x]

Therefore c1 ∼ c2 because for any σ they result in the same memory.

The general methodology should be clear by now: in case the computation termi-
nates we just need to develop the derivation and compare the results.

3.3.2 Examples: Parametric Equivalence Proofs

The programs considered so far were entirely spelled out: all the commands and
expressions were given and the only unknown parameter was the initial memory σ .
In this section we address equivalence proofs for programs that contain symbolic
expressions a and b and symbolic commands c: we will need to prove that equality
holds for any such a, b and c.

This is not necessarily more complicated than what we have done already: the
idea is that we can just carry the derivation with symbolic parameters.

Example 3.6 (Parametric proofs (1)). Let us consider the commands
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c1
def
= while b do c

c2
def
= if b then (c;while b do c) else skip = if b then (c;c1) else skip

Is it true that ∀b ∈ Bexp,c ∈Com. (c1 ∼ c2)?
We start by considering the derivation for c1 in a generic initial memory σ . The

command c1 is a cycle and there are two rules we can apply: either the rule 3.19
(whff), or the rule 3.18 (whtt). Which rule to use depends on the evaluation of b.
Since we do not know what b is, we must take into account both possibilities and
consider the two cases separately.

〈b,σ〉 → false) For c1 we have

〈while b do c,σ〉 → σ
′ ↖σ ′=σ 〈b,σ〉 → false

↖ �

For c2 we have

〈if b then (c;c1) else skip,σ〉 → σ
′ ↖ 〈b,σ〉 → false,

〈skip,σ〉 → σ
′

↖∗
σ ′=σ

�

It is evident that if 〈b,σ〉 → false then the two derivations for c1
and c2 lead to the same result.

〈b,σ〉 → true) For c1 we have

〈while b do c,σ〉 → σ
′ ↖ 〈b,σ〉 → true, 〈c,σ〉 → σ1,

〈c1,σ1〉 → σ
′

↖ 〈c,σ〉 → σ1, 〈c1,σ1〉 → σ
′

We find it convenient to stop the derivation here, because other-
wise we should add further hypotheses on the evaluation of c and
of the guard b after the execution of c. Instead, let us look at the
derivation of c2:

〈if b then (c;c1) else skip,σ〉 → σ
′ ↖ 〈b,σ〉 → true,
〈c;c1,σ〉 → σ

′

↖ 〈c;c1,σ〉 → σ
′

↖ 〈c,σ〉 → σ1,

〈c1,σ1〉 → σ
′
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Now we can stop again, because we have reached exactly the
same sub-goals that we have obtained by evaluating c1! It is
then obvious that if 〈b,σ〉 → true then the two derivations for
c1 and c2 will necessarily lead to the same result whenever they
terminate, and if one diverges the other diverges too.

Summing up the two cases, and since there are no more alternatives to try, we can
conclude that c1 ∼ c2.

Note that the equivalence proof technique that exploits reduction to the same
sub-goals is one of the most convenient methods for proving the equivalence of while
commands, whose evaluation may diverge.

Example 3.7 (Parametric proofs (2)). Let us consider the commands

c1
def
= while b do c

c2
def
= if b then c1 else skip

Is it true that ∀b ∈ Bexp,c ∈Com. c1 ∼ c2?
We have already examined the different derivations for c1 in the previous example.

Moreover, the evaluation of c2 when 〈b,σ〉 → false is also analogous to that of the
command c2 in Example 3.6. Therefore we focus on the analysis of c2 for the case
〈b,σ〉 → true. Trivially:

〈if b then c1 else skip,σ〉 → σ
′ ↖ 〈b,σ〉 → true, 〈while b do c,σ〉 → σ

′

↖ 〈while b do c,σ〉 → σ
′

So we reduce to a sub-goal identical to the one in the evaluation of c1, and we can
conclude that c1 ∼ c2.

3.3.3 Examples: Inequality Proofs

The next example deals with programs that can behave the same or exhibit different
behaviours depending on the initial memory.

Example 3.8 (Inequality proof). Let us consider the commands

c1
def
= (while x > 0 do x := 1);x := 0

c2
def
= x := 0

Let us prove that c1 6∼ c2.
For c2 we have
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〈x := 0,σ〉 → σ
′↖σ ′=σ [n/x] 〈0,σ〉 → n

↖n=0 �

That is: ∀σ . 〈x := 0,σ〉 → σ [0/x].
Next, we focus on the first part of c1:

w def
= while x > 0 do x := 1

If σ(x)≤ 0 it is immediate to check that

〈while x > 0 do x := 1,σ〉 → σ

The derivation is sketched below:

〈w,σ〉 → σ
′↖σ ′=σ 〈x > 0,σ〉 → false

↖ 〈x,σ〉 → n, 〈0,σ〉 → m, n≤ m

↖n=σ(x) 〈0,σ〉 → m, σ(x)≤ m

↖m=0 σ(x)≤ 0
↖ �

Instead, if we assume σ(x)> 0, then

〈w,σ〉 → σ
′ ↖ 〈x > 0,σ〉 → true, 〈x := 1,σ〉 → σ

′′, 〈w,σ ′′〉 → σ
′

↖∗ 〈x := 1,σ〉 → σ
′′, 〈w,σ ′′〉 → σ

′

↖∗
σ ′′=σ [1/x]

〈w,σ [1/x]〉 → σ
′

Let us continue the derivation for 〈w,σ [1/x]〉 → σ ′:

〈w,σ [1/x]〉 → σ
′↖ 〈x > 0,σ [1/x]〉 → true, 〈x := 1,σ [1/x]〉 → σ

′′′, 〈w,σ ′′′〉 → σ
′

↖∗ 〈x := 1,σ [1/x]〉 → σ
′′′, 〈w,σ ′′′〉 → σ

′

↖σ ′′′=σ [1/x]
〈w,σ [1/x]〉 → σ

′

Now, note that we got the same sub-goal 〈w,σ [1/x]〉 → σ ′ already inspected:
hence it is not possible to conclude the derivation, which will loop.

Summing up all the above we conclude that

∀σ ,σ ′. 〈while x > 0 do x := 1,σ〉 → σ
′ ⇒ σ(x)≤ 0∧σ

′ = σ

We can now complete the reduction for the whole of c1 when σ(x)≤ 0 (the case
σ(x)> 0 is discharged, because we know that there is no derivation).
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〈w;x := 0,σ〉 → σ
′↖ 〈w,σ〉 → σ

′′, 〈x := 0,σ ′′〉 → σ
′

↖∗
σ ′′=σ

〈x := 0,σ〉 → σ
′

↖∗
σ ′=σ [0/x]

�

Therefore the evaluation ends with σ ′ = σ [0/x].
By comparing c1 and c2 we have that

• there are memories on which the two commands behave the same (i.e., when
σ(x)≤ 0):

∃σ ,σ ′.
{
〈(while x > 0 do x := 1);x := 0,σ〉 → σ ′

〈x := 0,σ〉 → σ ′

• there are also cases for which the two commands exhibit different behaviours:

∃σ ,σ ′.
{
〈(while x > 0 do x := 1);x := 0,σ〉 6→
〈x := 0,σ〉 → σ ′

As an example, take any σ with σ(x) = 1 and σ ′ = σ [0/x].

Since we can find pairs (σ ,σ ′) such that c1 loops and c2 terminates we have that
c1 6∼ c2.

Note that in disproving the equivalence we have exploited a standard technique in
logic: to show that a universally quantified formula is not valid we can exhibit one
counterexample. Formally

¬∀x.(P(x)⇔ Q(x)) = ∃x.(P(x)∧¬Q(x))∨ (¬P(x)∧Q(x))

3.3.4 Examples: Diverging Computations

What happens if the program has infinitely many different looping situations? How
should we handle the memories for which this happens?

Let us rephrase the definition of equivalence between commands:

∀σ ,σ ′
{
〈c1,σ〉 → σ ′ ⇔ 〈c2,σ〉 → σ ′

〈c1,σ〉 6→ ⇔ 〈c2,σ〉 6→
Next we see an example where this situation emerges.

Example 3.9 (Proofs of non-termination). Let us consider the commands

c1
def
= while x > 0 do x := 1

c2
def
= while x > 0 do x := x+1
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Is it true that c1 ∼ c2? On the one hand, note that c1 can only store 1 in x, whereas
c2 can keep incrementing the value stored in x, so one may be led to suspect that
the two commands are not equivalent. On the other hand, we know that when the
commands diverge, the values stored in the memory locations are inessential.

As already done in previous examples, let us focus on the possible derivation of c1
by considering two separate cases that depends of the evaluation of the guard x > 0:

Case σ(x)≤ 0) If σ(x)≤ 0, we know already from Example 3.8 that 〈c1,σ〉→ σ :

〈c1,σ〉 → σ
′ ↖σ ′=σ 〈x > 0,σ〉 → false

↖∗ �

In this case, the body of the while is not executed and the resulting
memory is left unchanged. We leave to the reader the details of
the analogous derivation of c2, which behaves the same.

Case σ(x)> 0) If σ(x)> 0, we know already from Example 3.8 that 〈c1,σ〉 6→
Now we must check whether c2 diverges too when σ(x)> 0:

〈c2,σ〉 → σ
′ ↖ 〈x > 0,σ〉 → true,

〈x := x+1,σ〉 → σ1, 〈c2,σ1〉 → σ
′

↖∗ 〈x := x+1,σ〉 → σ1, 〈c2,σ1〉 → σ
′

↖∗
σ1=σ[σ(x)+1/x]

〈c2,σ
[

σ(x)+1/x

]
〉 → σ

′

↖ 〈x > 0,σ
[

σ(x)+1/x

]
〉 → true,

〈x := x+1,σ
[

σ(x)+1/x

]
〉 → σ2,

〈c2,σ2〉 → σ
′

↖∗ 〈x := x+1,σ
[

σ(x)+1/x

]
〉 → σ2,

〈c2,σ2〉 → σ
′

↖∗
σ2=σ1[σ1(x)+1/x]=σ[σ(x)+2/x]

〈c2,σ
[

σ(x)+2/x

]
〉 → σ

′

· · ·

Now the situation is more subtle: we keep looping, but without
crossing the same sub-goal twice, because the memory is updated
with a different value for x at each iteration. However, using in-
duction, which will be the subject of Section 4.1.3, we can prove
that the derivation will not terminate. Roughly, the idea is the
following:

• at step 0, i.e., at the first iteration, the cycle does not terminate;
• if at the ith step the cycle has not terminated yet, then it will

not terminate at the (i+1)th step, because x > 0⇒ x+1 > 0.
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The formal proof would require us to show that at the ith iteration
the value stored in the memory at location x will be σ(x) + i,
from which we can conclude that the expression x > 0 will hold
true (since by assumption σ(x)> 0 and thus σ(x)+ i > 0). Once
the proof is completed, we can conclude that c2 diverges and
therefore c1 ∼ c2. Below we outline a simpler technique to prove
non-termination that can be used under some circumstances.

Let us consider the command w def
= while b do c. As we have seen in the last

example, to prove the non-termination of w we can exploit the induction hypotheses
over memory states to define the inference rule below: the idea is that if we can find
a set S of memories such that, for any σ ′ ∈ S, the guard b is evaluated to true and
the execution of c leads to a memory σ ′′ which is also in S, then we can conclude
that w diverges when evaluated in any of the memories σ ∈ S.

σ ∈ S ∀σ ′ ∈ S.〈b,σ ′〉 → true ∀σ ′ ∈ S,∀σ ′′.(〈c,σ ′〉 → σ
′′ ⇒ σ

′′ ∈ S)

〈w,σ〉 6→
(3.20)

Note that the property

∀σ ′′.(〈c,σ ′〉 → σ
′′ ⇒ σ

′′ ∈ S)

is satisfied even when 〈c,σ ′〉 6→, because there is no σ ′′ such that the left-hand side
of the implication holds.

Example 3.10. Let us consider again the command c2 from Example 3.9:

c2
def
= while x > 0 do x := x+1.

We set S = {σ | σ(x) > 0}, take σ ∈ S and prove the premises of the rule for
divergence to conclude that 〈w,σ〉 6→.

1. We must show that ∀σ ′ ∈ S.〈x > 0,σ ′〉 → true, which follows by definition of S.
2. We need to prove that ∀σ ′ ∈ S,∀σ ′′.(〈x := x+ 1,σ ′〉 → σ ′′ ⇒ σ ′′ ∈ S). Take

σ ′ ∈ S, i.e., such that σ ′(x)> 0, and assume 〈x := x+1,σ ′〉 → σ ′′. Then it must
be that σ ′′ = σ ′[σ

′(x)+1/x] and we have σ ′′(x) = σ ′[σ
′(x)+1/x](x) = σ ′(x)+1 > 0

because σ ′(x)> 0 by hypothesis. Hence σ ′′ ∈ S.

Recall that, in general, program termination is semi-decidable (and non-termination
possibly non-semi-decidable), so we cannot have a proof technique for demonstrating
the convergence or divergence of any program.

Example 3.11 (Collatz’s algorithm). Consider the algorithm below, which is known
as Collatz’s algorithm, or also as Half Or Triple Plus One

d def
= x := y ; k := 0 ; while x > 0 do (x := x−2 ; k := k+1)

c def
= while y > 1 do (d ; if x = 0 then y := k else y := (3× y)+1)
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The command d, when executed in a memory σ with σ(y) > 0, terminates by
producing either a memory σ ′ with σ ′(x) = 0 and σ(y) = 2×σ ′(k) (when σ(y)
is even), or a memory σ ′′ with σ ′′(x) = −1 (when σ(y) is odd). The command c
exploits d to update at each iteration the value of y to either half of y (when σ(y) is
even) or three times y plus one (when σ(y) is odd).

If integer division (/) and remainder (%) operators were present, the algorithm
could be written in the simpler form:

while y > 1 do (
if y%2 = 0 then y := y/2;

else y := (3× y)+1
)

It is an open mathematical conjecture to prove that the command c terminates
when executed in any memory σ . The conjecture has been checked by computers
and proved true1 for all starting values of y up to 5×260.

Problems

3.1. Consider the IMP command

w def
= while y > 0 do (r := r× x ; y := y−1)

Let c def
= (r := 1 ; w) and σ

def
= [9/x,

2 /y]. Use goal-oriented derivation, according to
the operational semantics of IMP, to find the memory σ ′ such that 〈c,σ〉 → σ ′, if it
exists.

3.2. Consider the IMP command

w def
= while y≥ 0 do

if y = 0 then y := y+1 else skip

For which memories σ ,σ ′ do we have 〈w,σ〉 → σ ′?

3.3. Prove that for any b ∈ Bexp,c ∈Com we have c∼ if b then c else c.

3.4. Prove that for any b ∈ Bexp,c ∈Com we have c1 ∼ c2, where

c1
def
= while b do c

c2
def
= while b do

if b then c else skip

1 Source http://en.wikipedia.org/wiki/Collatz_conjecture, last visited July
2015.
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3.5. Let

c1
def
= c ; while b do c

c2
def
= (while b do c) ; c

Is it the case that for any b ∈ Bexp,c ∈Com we have c1 ∼ c2?

3.6. Prove that c1 6∼ c2, where

c1
def
= while x > 0 do x := 0

c2
def
= while x≥ 0 do x := 0

3.7. Consider the IMP command

w def
= while x≤ y do (x := x+1 ; y := y+2)

Find the largest set S of memories such that the command w diverges. Use the
inference rule for divergence to prove non-termination.

3.8. Prove that c1 6∼ c2, where

c1
def
= while x > 0 do x := x+1

c2
def
= while x≥ 0 do x := x+2

3.9. Suppose we extend IMP with the arithmetic expression a0/a1 for integer division,
whose operational semantics is

〈a0,σ〉 → n0 〈a1,σ〉 → n1
n0 = n1×n (div)

〈a0/a1,σ〉 → n
(3.21)

1. Prove that the semantics of extended arithmetic expressions is not deterministic.
In other words, give a counterexample to the property below:

∀a ∈ Aexp,∀σ ∈ Σ ,∀n,m ∈ Z. (〈a,σ〉 → n ∧ 〈a,σ〉 → m ⇒ n = m)

2. Prove that the semantics of extended arithmetic expressions is not always defined.
In other words, give a counterexample to the property below:

∀a ∈ Aexp,∀σ ∈ Σ ,∃n ∈ Z. 〈a,σ〉 → n

3.10. Define a small-step operational semantics for IMP. To this aim, introduce a
special symbol ? as a termination marker and consider judgements of either the form
〈c,σ〉 → 〈c′,σ ′〉 or 〈c,σ〉 → 〈?,σ ′〉. Define the semantics in such a way that the
evaluation is deterministic and that 〈c,σ〉 →∗ 〈?,σ ′〉 if and only if 〈c,σ〉 → σ ′ in
the usual big-step semantics for IMP.



Chapter 4
Induction and Recursion

To understand recursion, you must first understand recursion.
(traditional joke)

Abstract In this chapter we present some induction techniques that will turn out to
be useful for proving formal properties of the languages and models presented in the
book. We start by introducing Noether’s principle of well-founded induction, from
which we then derive induction principles over natural numbers, terms of a signature
and derivations in a logical system. The chapter ends by presenting well-founded
recursion.

4.1 Noether’s Principle of Well-Founded Induction

In the literature several different kinds of induction are defined, but they all rely on
the so-called Noether’s principle of well-founded induction. We start by defining this
important principle and will then derive several induction methods.

4.1.1 Well-Founded Relations

We recall some key mathematical notions and definitions.

Definition 4.1 (Binary relation). A binary relation (relation for short) ≺ over a set
A is a subset of the cartesian product A×A:

≺⊆ A×A

For (a,b) ∈ ≺ we use the infix notation a≺ b and also write equivalently b� a.
Moreover, we write a 6≺ b in place of (a,b) 6∈ ≺.

A relation≺⊆ A×A can be conveniently represented as an oriented graph whose
nodes are the elements of A and whose arcs n→ m represent the pairs (n,m) ∈ ≺ in
the relation.

© Springer International Publishing Switzerland 2017
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Fig. 4.1: Graph of a relation

Example 4.1. Let A = {a,b,c,d,e, f}. The graph in Figure 4.1 represents the relation
≺ over the set A with a≺ b, b≺ c, c≺ d, c≺ e, e≺ f , e≺ b.

Definition 4.2 (Infinite descending chain). Given a relation ≺ over the set A, an
infinite descending chain is an infinite sequence {ai}i∈N of elements in A such that

∀i ∈ N. ai+1 ≺ ai

An infinite descending chain can be represented as a function a from N to A such
that a(i) decreases (according to ≺) as i grows:

a(0)� a(1)� a(2)� ·· ·

Definition 4.3 (Well-founded relation). A relation is well-founded if it has no infi-
nite descending chains.

Definition 4.4 (Transitive closure). Let ≺ be a relation over A. The transitive clo-
sure of ≺, written ≺+, is defined by the following inference rules:

a≺ b
a≺+ b

a≺+ b b≺+ c
a≺+ c

By the first rule, ≺ is always included in ≺+. It can be proved that (≺+)+ always
coincides with ≺+.

Definition 4.5 (Transitive and reflexive closure). Let ≺ be a relation over A. The
transitive and reflexive closure of≺, written≺∗, is defined by the following inference
rules:

a≺∗ a
a≺ b
a≺∗ b

a≺∗ b b≺∗ c
a≺∗ c

It can be proved that both ≺ and ≺+ are included in ≺∗ and that (≺∗)∗ always
coincides with ≺∗.

Example 4.2. Consider the usual “less than” relation < over integers. Since we have,
e.g., the infinite descending chain

4 > 2 > 0 >−2 >−4 > · · ·

it is not well-founded. Note that its transitive closure <+ is the same as <.
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Example 4.3. Consider the usual “less than” relation < over natural numbers. We
cannot have an infinite descending chain {ai}i∈N because there are only finitely many
elements less than a0. Hence the relation is well-founded. Note that <+=<.

Example 4.4. Consider the usual “less than or equal to” ≤ relation over natural
numbers. Since we have, e.g., the infinite descending chain

4≥ 2≥ 0≥ 0≥ 0≥ ·· ·

the relation ≤ is not well-founded. Note also, than any infinite descending chain
must include only a finite number of elements, because there are only a finite number
of elements less than or equal to a0, and therefore there exists some k ∈ N such that
∀i≥ k. ai = ak. Note that ≤ is the reflexive and transitive closure of <, i.e., <∗=≤.

Theorem 4.1. Let≺ be a relation over A. For any x,y∈ A, x≺+ y if and only if there
exist a finite number of elements z0,z1, ...,zk ∈ A with k > 0 such that

x = z0 ≺ z1 ≺ ·· · ≺ zk = y.

The proof of the above theorem is left as an exercise (see Problem 4.4).
With respect to the oriented graph associated with the relation ≺, we note that

a≺+ b means that there is a non-empty finite path from a to b, while a≺∗ b means
that there is a (possibly empty) finite path from a to b.

Theorem 4.2 (Well-foundedness of ≺+). A relation ≺ is well-founded if and only
if its transitive closure ≺+ is well-founded.

Proof. One implication is trivial: if ≺+ is well-founded then ≺ is obviously well-
founded, because any descending chain for ≺ is also a descending chain for ≺+ (and
all such chains are finite by hypothesis).

For the other direction, by contraposition let us assume ≺+ is not well-founded
and prove that ≺ is not well-founded. Take any infinite descending chain

a0 �+ a1 �+ a2 �+ · · ·

But whenever ai �+ ai+1, by Theorem 4.1, there is a finite descending ≺-chain of
elements between ai and ai+1 and therefore we can build an infinite descending chain

a0 � ·· · � a1 � ·· · � a2 � ·· ·

so that ≺ is not well-founded. ut

Example 4.5. Consider the “immediate precedence” relation ≺ over natural numbers,
such that n≺ n+1 for all n∈N. Note that the transitive closure of≺ is the usual “less
than” relation < over natural numbers, i.e.,≺+=<. By Theorem 4.2 and Example 4.3
the relation ≺ over N is well-founded.

Definition 4.6 (Acyclic relation). We say that ≺ has a cycle if ∃a ∈ A. a≺+ a. We
say that ≺ is acyclic if it has no cycle (i.e., ∀a ∈ A. a 6≺+ a).
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Theorem 4.3 (Well-founded relations are acyclic). If the relation≺ is well-founded,
then it is acyclic.

Proof. By contraposition, we prove that if the relation ≺ is not acyclic then it is not
well-founded. Let us assume that there is a ∈ A such that a≺+ a. Then we have a
trivial infinite descending chain

a�+ a�+ a�+ a�+ · · ·

By Theorem 4.2, ≺ is not well-founded because ≺+ is not well-founded. ut
For example, the relation in Figure 4.1 is not acyclic and thus it is not well-

founded.

Theorem 4.4 (Well-founded relations over finite sets). Let A be a finite set and let
≺ be acyclic, then ≺ is well-founded.

Proof. We prove that if ≺ is not well-founded then it is not acyclic. Assume is
not well-founded, then it has an infinite descending chain. Since A is finite, any
descending chain with more than |A| elements must contain (at least) two occurrences,
say at positions i and j with i < j, of the same element (by the so-called “pigeonhole
principle”), so that

ai � ai+1 � ·· · � a j−1 � a j = ai

forms a cycle. ut
Definition 4.7 (Minimal element). Let ≺ be a relation over the set A. Given a set
Q⊆ A, we say that m ∈ Q is minimal if there is no element x ∈ Q such that x ≺ m,
i.e., ∀x ∈ Q. x 6≺ m.

It follows that Q has no minimal element if ∀m ∈ Q. ∃x ∈ Q. x≺ m.

Lemma 4.1 (Well-founded relation). Let≺ be a relation over the set A. The relation
≺ is well-founded if and only if every nonempty subset Q⊆ A contains a minimal
element m.

Proof. Since P⇔ Q is equivalent to ¬P⇔¬Q, the statement of this lemma can be
rephrased by saying that the relation ≺ has an infinite descending chain if and only
if there exists a nonempty subset Q⊆ A with no minimal element.

We prove each implication (of the transformed statement) separately.

⇒) We assume that ≺ has an infinite descending chain a1 � a2 � a3 � ·· · and we
let Q = {a1,a2,a3, . . .} be the set of all the elements in the infinite descending
chain. The set Q has no minimal element, because for any candidate ai ∈ Q
we know there is one element ai+1 ∈ Q with ai � ai+1.

⇐) Let Q be a nonempty subset of A with no minimal element. Since Q is
nonempty, it must contain at least one element. We randomly pick an ele-
ment a0 ∈ Q. Since a0 is not minimal there must exist an element a1 ∈ Q such
that a0 � a1, and we can iterate the reasoning (i.e. a1 is not minimal and there
is a2 ∈ Q with a0 � a1 � a2, etc.). So we can build an infinite descending
chain. ut
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Example 4.6 (Natural numbers). Both n≺ n+1 (the immediate precedence relation)
and n < n+1+ k (the usual “less than” relation), with n,k ∈ N, are simple examples
of well-founded relations. In fact, from every element n∈Nwe can start a descending
chain of length at most n.

Definition 4.8 (Terms over one-sorted signatures). Let Σ = {Σn}n∈N be a one-
sorted signature, i.e., a set of ranked operators f such that f ∈ Σn if f takes n
arguments. We define the set of Σ -terms as the set TΣ that is defined inductively by
the following inference rule:

ti ∈ TΣ i = 1, . . . ,n f ∈ Σn

f (t1, . . . , tn) ∈ TΣ

(4.1)

Definition 4.9 (Terms over many-sorted signatures). Let

• S be a set of sorts (i.e. the set of the different data types we want to consider);
• Σ = {Σs1...sn,s}s1,...,sn,s∈S be a signature over S, i.e. a set of typed operators ( f ∈

Σs1...sn,s is an operator that takes n arguments, the ith argument being of type si,
and gives a result of type s).

We define the set of Σ -terms as the set

TΣ = {TΣ ,s}s∈S

where, for s ∈ S, the set TΣ ,s is the set of terms of sort s over the signature Σ , defined
inductively by the following inference rule:

ti ∈ TΣ ,si i = 1, . . . ,n f ∈ Σs1...sn,s

f (t1, . . . , tn) ∈ TΣ ,s

(When S is a singleton, we are in the same situation as in Definition 4.8 and write
just Σn instead of Σw,s with w = s ... s︸ ︷︷ ︸

n

.)

Since the operators of the signature are known, we can specialise the above rule 4.1
for each operator, i.e. we can consider the set of inference rules

{
ti ∈ TΣ ,si i = 1, . . . ,n

f (t1, . . . , tn) ∈ TΣ ,s

}
f∈Σs1 ...sn ,s

(4.2)

Note that, as a special case of the above inference rule, for constants a ∈ Σε,s we
have

a ∈ TΣ ,s
(4.3)

Example 4.7 (IMP signature). In the case of IMP, we have S = {Aexp,Bexp,Com}
and then we have an operation for each production in the grammar.
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For example, the sequential composition of commands “;” corresponds to the
binary infix operator (−;−) ∈ ΣComCom,Com.

Similarly the boolean expression that tests for equality is built using the binary
infix operator (−=−) ∈ ΣAexpAexp,Bexp.

By abusing the notation, we often write Com for TΣ ,Com (respectively, Aexp for
TΣ ,Aexp and Bexp for TΣ ,Bexp).

Then, we have inference rule instances such as:

skip ∈Com

skip ∈Com x := 1 ∈Com

skip ; x := 1 ∈Com

The programs we consider are (well-formed) terms over a suitable signature Σ

(possibly many-sorted). Therefore it is useful to define a well-founded containment
relation between a term and its subterms. For example, we will exploit this relation
when dealing with structural induction in Section 4.1.5.

Example 4.8 (Terms and subterms). For any n-ary function symbol f ∈ Σn and terms
t1, . . . , tn, we let

ti ≺ f (t1, . . . , tn) i = 1, . . . ,n

The idea is that a term ti precedes (according to ≺, i.e. it is less than) any term
that contains it as a subterm (e.g. as an argument).

As a concrete example, let us consider the signature Σ with Σ0 = {c} and Σ2 = { f}.
Then, we have, e.g.,

c≺ f (c,c)≺ f ( f (c,c),c)≺ f ( f ( f (c,c),c), f (c,c))

If we look at terms as trees (function symbols as nodes with one child for each
argument and constants as leaves), then we can observe that whenever s≺ t the depth
of s is strictly less than the depth of t. Therefore any descending chain is finite (the
length is at most the depth of the first term of the chain). Moreover, in the particular
case above, c is the only constant and therefore the only minimal element.

Example 4.9 (Lexicographic precedence relation). A quite common (well-founded)
relation is the so-called lexicographic precedence relation. The idea is to have ele-
ments that are strings over a given ordered alphabet and to compare them symbol by
symbol, from the leftmost to the rightmost: as soon as we find a symbol in one string
that precedes the symbol in the same position of the other string, then we assume
that the former string precedes the latter (independently of the remaining symbols of
the two strings).

As a concrete example, let us consider the set of all pairs 〈n,m〉 of natural numbers
ordered by immediate precedence. The lexicographic precedence relation is defined
as (see Figure 4.2):

• ∀n,m,k. (〈n,m〉 ≺ 〈n+1,k〉)
• ∀n,m. (〈n,m〉 ≺ 〈n,m+1〉)
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〈2,0〉 //

...

〈2,1〉 //

...

〈2,2〉

...

···

〈1,0〉 //

OO << 55

〈1,1〉 //

OO <<bb

〈1,2〉

OObbii

···

〈0,0〉 //

OO << 55

〈0,1〉 //

OO <<bb

〈0,2〉

OObbii

···

Fig. 4.2: Graph of the lexicographic precedence relation over pairs of natural numbers

By Theorem 4.2, the relation ≺ is well-founded if and only if its transitive closure
is such. Note that the relation ≺+ has no cycle and any descending chain is bounded
by the only minimal element 〈0,0〉. For example, we have

〈5,1〉 �+ 〈4,25〉 �+ 〈3,100〉 �+ 〈3,14〉 �+ 〈2,1〉 �+ 〈1,1000〉 �+ 〈0,0〉

It is worth noting that any element 〈n,m〉 with n ≥ 1 is preceded by infinitely
many elements (e.g., ∀k. 〈0,k〉 ≺ 〈1,0〉) and it can be the first element of infinitely
many (finite) descending chains (of unbounded length).

Still, given any nonempty set Q⊆N×N, it is easy to find a minimal element m ∈
Q, namely such that ∀b≺+ m. b 6∈ Q. In fact, we can just take m = 〈m1,m2〉, where
m1 is the minimum (w.r.t. the usual less than relation over natural numbers) of the set
Q1 = {n1 | 〈n1,n2〉 ∈Q} and m2 is the minimum of the set Q2 = {n2 | 〈m1,n2〉 ∈Q}.
Note that Q1 is nonempty because Q is such by hypothesis, and Q2 is nonempty
because m1 ∈ Q1 and therefore there must exist at least one pair 〈m1,n2〉 ∈ Q for
some n2. Thus

〈m1 = min{n1 | 〈n1,n2〉 ∈ Q},min{n2 | 〈m1,n2〉 ∈ Q}〉

is a (the only) minimal element of Q. By Lemma 4.1 the relation ≺+ is well-founded
and so is ≺ (by Theorem 4.2).

4.1.2 Noetherian Induction

Theorem 4.5. Let ≺ be a well-founded relation over the set A and let P be a unary
predicate over A. Then

(∀a ∈ A. (∀b≺ a. P(b))⇒ P(a)) ⇔ ∀a ∈ A. P(a)
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Proof. We prove the two implications separately:

⇒) We proceed by contraposition. We assume that ¬(∀a ∈ A. P(a)), i.e., that
∃a ∈ A. ¬P(a). Let us consider the nonempty set Q = {a ∈ A | ¬P(a)} of all
those elements a in A for which P(a) is false. Since ≺ is well-founded, we
know by Lemma 4.1 that there is a minimal element m ∈ Q. Obviously ¬P(m)
(otherwise m cannot be in Q). Since m is minimal in Q, then ∀b≺ m. b 6∈ Q,
i.e., ∀b≺ m. P(b). Then, the element m is a counterexample to the property
(∀a ∈ A. (∀b ≺ a. P(b))⇒ P(a)), because ∀b ≺ m. P(b) but ¬P(m). Hence
we conclude that

¬(∀a ∈ A. (∀b≺ a. P(b))⇒ P(a))

⇐) We observe that if ∀a. P(a) then (∀b ≺ a. P(b))⇒ P(a) is true for any a
because the premise (∀b ≺ a. P(b)) is not relevant (the conclusion of the
implication is true). ut

From the first implication, the validity of the following induction principle follows.

Definition 4.10 (Noetherian induction). Let ≺ be a well-founded relation over the
set A and let P be a unary predicate over A. Then the following inference rule is
called Noetherian induction.

∀a ∈ A. (∀b≺ a. P(b))⇒ P(a)
∀a ∈ A. P(a)

(4.4)

We call a base case any element a ∈ A such that the set of its predecessors
{b ∈ A | b≺ a} is empty.

4.1.3 Weak Mathematical Induction

The principle of weak mathematical induction is a special case of Noetherian induc-
tion that is frequently used to prove formulas over the set of natural numbers: we
take

A = N n≺ m ⇔ m = n+1

In this case

• if we take a = 0 then (∀b≺ a. P(b))⇒ P(a) amounts to P(0), because there is
no b ∈ N such that b≺ 0;

• if we take a = n+ 1 for some n ∈ N, then (∀b ≺ a. P(b))⇒ P(a) amounts to
P(n)⇒ P(n+1).

In other words, to prove that P(n) holds for all n ∈ N we can just prove that

• P(0) holds (base case), and
• given a generic n ∈ N, P(n+1) holds whenever P(n) holds (inductive case).
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Definition 4.11 (Weak mathematical induction).

P(0) ∀n ∈ N. (P(n)⇒ P(n+1))
∀n ∈ N. P(n)

(4.5)

The weak mathematical induction principle is helpful, because it allows us to
exploit the hypothesis P(n) when proving P(n+1).

4.1.4 Strong Mathematical Induction

The principle of strong mathematical induction extends the weak one by strengthen-
ing the hypotheses under which P(n+1) is proved to hold. We take

A = N n≺ m ⇔ ∃k ∈ N. m = n+ k+1

In this case

• if we take a = 0 then (∀b≺ a. P(b))⇒ P(a) amounts to P(0), as for the case of
weak mathematical induction;

• if we take a = n + 1 for some n ∈ N, then (∀b ≺ a. P(b)) ⇒ P(a) amounts
to (P(0)∧P(1)∧ ·· · ∧ P(n))⇒ P(n+ 1), i.e., using a more concise notation,
(∀i≤ n. P(i))⇒ P(n+1).

In other words, to prove that P(n) holds for any n ∈ N we can just prove that

• P(0) holds, and
• given a generic n ∈ N, P(n+1) holds whenever P(i) holds for all i = 0, ...,n.

Definition 4.12 (Strong mathematical induction).

P(0) ∀n ∈ N. (∀i≤ n. P(i))⇒ P(n+1)
∀n ∈ N. P(n)

(4.6)

The adjective “strong” comes from the fact that to prove P(n+ 1) we can now
exploit the stronger hypothesis P(0)∧P(1)∧ ...∧P(n) instead of just P(n).

4.1.5 Structural Induction

The principle of structural induction is a special instance of Noetherian induction
for proving properties over the set of terms generated by a given signature. Here, the
precedence relation binds a term to its subterms.

Structural induction takes TΣ as the set of elements and the subterm-term relation
as the well-founded relation

A = TΣ ti < f (t1, . . . , tn) i = 1, . . . ,n
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Definition 4.13 (Structural induction).

∀t ∈ TΣ . (∀t ′ < t. P(t ′))⇒ P(t)

∀t ∈ TΣ . P(t)
(4.7)

By exploiting the definition of the well-founded subterm relation, we can expand
the above principle as the rule

∀ f ∈ Σs1...sn,s. ∀t1 ∈ TΣ ,s1 ...∀tn ∈ TΣ ,sn . (P(t1)∧ . . .∧P(tn))⇒ P( f (t1, . . . , tn))

∀t ∈ TΣ . P(t)

An easy link can be established with mathematical induction by taking a unique
sort, a constant 0 and a unary operation succ (i.e., Σ = Σ0∪Σ1 with Σ0 = {0} and
Σ1 = {succ}). Then, the structural induction rule would become

P(0) ∀t. (P(t)⇒ P(succ(t)))

∀t. P(t)

Example 4.10. Let us consider the grammar of IMP arithmetic expressions:

a ::= n | x | a0 +a1 | a0−a1 | a0×a1

How do we exploit structural induction to prove that a property P(·) holds for
all arithmetic expressions a? (Namely, we want to prove that ∀a ∈ Aexp. P(a).) The
structural induction rule is

∀n. P(n) ∀x. P(x) ∀a0,a1. (P(a0)∧P(a1)⇒ P(a0 +a1))
∀a0,a1. (P(a0)∧P(a1)⇒ P(a0−a1)) ∀a0,a1. (P(a0)∧P(a1)⇒ P(a0×a1))

∀a. P(a)

Essentially, to prove that ∀a ∈ Aexp. P(a), we just need to show that the property
holds for any production, i.e., we need to prove that all of the following hold

• P(n) holds for any integer n;
• P(x) holds for any identifier x;
• P(a0 +a1) holds whenever both P(a0) and P(a1) hold;
• P(a0−a1) holds whenever both P(a0) and P(a1) hold;
• P(a0×a1) holds whenever both P(a0) and P(a1) hold.

Example 4.11 (Termination of arithmetic expressions). Let us consider the case of
arithmetic expressions seen above and prove that the evaluation of expressions always
terminates (a property that is also called normalisation):1

∀a ∈ Aexp. ∀σ ∈ Σ . ∃m ∈ Z. 〈a,σ〉 → m

1 We recall that the (overloaded) symbol Σ stands here for the set of memories and not for a generic
signature.



4.1 Noether’s Principle of Well-Founded Induction 87

In this case we let

P(a) def
= ∀σ ∈ Σ . ∃m ∈ Z. 〈a,σ〉 → m

We prove that ∀a ∈ Aexp. P(a) by structural induction. This amounts to proving that

• P(n) def
= ∀σ ∈Σ . ∃m∈Z. 〈n,σ〉→m holds for any integer n. Trivially, by applying

rule (num) we take m = n and we are done.
• P(x) def

= ∀σ ∈ Σ . ∃m ∈ Z. 〈x,σ〉 → m holds for any location x. Trivially, by
applying rule (ide) we take m = σ(x) and we are done.

• P(a0)∧P(a1)⇒ P(a0 +a1) for any arithmetic expressions a0 and a1. We assume

P(a0)
def
= ∀σ ∈ Σ . ∃m0 ∈ Z. 〈a0,σ〉 → m0

P(a1)
def
= ∀σ ∈ Σ . ∃m1 ∈ Z. 〈a1,σ〉 → m1

We want to prove that

P(a0 +a1)
def
= ∀σ ∈ Σ . ∃m ∈ Z. 〈a0 +a1,σ〉 → m

Take a generic σ ∈ Σ . We want to find m ∈ Z such that 〈a0 + a1,σ〉 → m. By
applying rule (sum) we can take m = m0 +m1 if we prove that 〈a0,σ〉 → m0 and
〈a1,σ〉→m1. But by the inductive hypothesis we know that such m0 and m1 exist
and we are done.

• P(a0)∧P(a1)⇒ P(a0−a1) for any arithmetic expressions a0 and a1. The proof
is analogous to the previous case and thus omitted.

• P(a0)∧P(a1)⇒ P(a0×a1) for any arithmetic expressions a0 and a1. The proof
is analogous to the previous case and thus omitted.

Example 4.12 (Determinism of arithmetic expressions). Let us consider again the
case of IMP arithmetic expressions and prove that their evaluation is deterministic:

∀a ∈ Aexp. ∀σ ∈ Σ . ∀m,m′ ∈ Z. (〈a,σ〉 → m∧〈a,σ〉 → m′)⇒ m = m′

In other words, we want to show that given any arithmetic expression a and any
memory σ the evaluation of a in σ will always return exactly one value. We let

P(a) def
= ∀σ ∈ Σ . ∀m,m′ ∈ Z. (〈a,σ〉 → m∧〈a,σ〉 → m′)⇒ m = m′

We proceed by structural induction.

a = n) We want to prove that

P(n) def
= ∀σ ,m,m′. (〈n,σ〉 → m∧〈n,σ〉 → m′)⇒ m = m′

holds. Let us take generic σ ,m,m′. We assume the premises 〈n,σ〉→
m and 〈n,σ〉 → m′ and prove that m = m′. In fact, there is only one
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rule that can be used to evaluate an integer number, and it always
returns the same value. Therefore m = n = m′.

a = x) We want to prove that

P(x) def
= ∀σ ,m,m′. (〈x,σ〉 → m∧〈x,σ〉 → m′)⇒ m = m′

holds. We assume the premises 〈x,σ〉 → m and 〈x,σ〉 → m′ and
prove that m = m′. Again, there is only one rule that can be applied,
whose outcome depends on σ . Since σ is the same in both cases,
m = σ(x) = m′.

a = a0 +a1) We assume the inductive hypotheses

P(a0)
def
= ∀σ ,m0,m′0. (〈a0,σ〉 → m0∧〈a0,σ〉 → m′0)⇒ m0 = m′0

P(a1)
def
= ∀σ ,m1,m′1. (〈a1,σ〉 → m1∧〈a1,σ〉 → m′1)⇒ m1 = m′1

and we want to prove that P(a0 +a1), i.e., that

∀σ ,m,m′. (〈a0 +a1,σ〉 → m∧〈a0 +a1,σ〉 → m′)⇒ m = m′

We assume the premises 〈a0+a1,σ〉→m and 〈a0+a1,σ〉→m′ and
prove that m = m′. By the first premise, it must be that m = m0 +m1
for some m0,m1 such that 〈a0,σ〉 → m0 and 〈a1,σ〉 → m1, because
there is only one rule applicable to a0 + a1; analogously, by the
second premise, we must have m′ = m′0 +m′1 for some m′0,m

′
1 such

that 〈a0,σ〉 → m′0 and 〈a1,σ〉 → m′1. By the inductive hypothesis
P(a0) we know that m0 = m′0 and by P(a1) we have m1 = m′1. Thus,
m = m0 +m1 = m′0 +m′1 = m′ and thus P(a0 +a1) holds.

The remaining cases for a = a0−a1 and a = a0×a1 follow exactly the same pattern
as that of a = a0 +a1.

4.1.6 Induction on Derivations

We can define an induction principle over the set of derivations of a logical system.
See Definitions 2.1 and 2.4 for the notions of inference rule and derivation.

Definition 4.14 (Immediate sub-derivation). We say that d′ is an immediate sub-
derivation of d, or simply a sub-derivation of d, written d′ ≺ d, if and only if d has
the form ({d1, ...,dn} / y) with d1 
R x1, ...,dn 
R xn and ({x1, ...,xn} / y) ∈ R (i.e.,
d 
R y) and d′ = di for some 1≤ i≤ n.

Example 4.13 (Immediate sub-derivation). Let us consider the derivation
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num
〈1,σ〉 → 1

num
〈2,σ〉 → 2

sum
〈1+2,σ〉 → 1+2 = 3

The two derivations

num
〈1,σ〉 → 1

num
〈2,σ〉 → 2

are immediate sub-derivations of the derivation that exploits rule (sum).

We can derive the notion of proper sub-derivations from that of immediate ones.

Definition 4.15 (Proper sub-derivation). We say that d′ is a proper sub-derivation
of d if and only if d′ ≺+ d.

Note that both ≺ and ≺+ are well-founded, so they can be used in proofs by
induction.

For example, the induction principle based on immediate sub-derivations can be
phrased as follows.

Definition 4.16 (Induction on derivations). Let R be a set of inference rules and D
the set of derivations defined on R, then

∀{x1, . . . ,xn}/y ∈ R. (∀di 
R xi. P(d1)∧ . . .∧P(dn))⇒ P({d1, . . . ,dn}/y)

∀d ∈ D. P(d)
(4.8)

(Note that d1, . . . ,dn are derivations for x1, . . . ,xn, respectively).

Induction on derivations shares similarities with structural induction. The analogy
comes from viewing the (instances of) inference rules as symbolic operators to
construct derivations, with axioms playing the role of constants.

4.1.7 Rule Induction

The last kind of induction principle we shall consider applies to sets of elements
that are defined by means of inference rules: we have a set of inference rules that
establish which elements belong to the set (i.e. the theorems of the logical system)
and we need to prove that the application of any such rule will not compromise the
validity of a given predicate.

Recall that a rule has the form (∅/y) if it is an axiom, or ({x1, . . . ,xn}/y) other-
wise. Given a set R of such rules, the set of theorems of R is defined as

IR = {y |
R y}

The rule induction principle states that to show that the property P holds for all
elements of IR, we can prove the following:
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• P(y) holds for any axiom ∅/y ∈ R;
• for any other rule {x1, . . . ,xn}/y∈ R we have (∀1≤ i≤ n. xi ∈ IR∧P(xi))⇒ P(y).

Definition 4.17 (Rule induction). Let R be a logical system. The principle of rule
induction is

∀(X/y) ∈ R. (X ⊆ IR ∧ ∀x ∈ X . P(x))⇒ P(y)

∀x ∈ IR. P(x)
(4.9)

The principle of rule induction is a useful variant of induction on derivations. In
fact by assuming that X ⊆ IR it follows that there is a derivation di for each theorem
xi ∈ X , so that a longer derivation for y is built by applying the rule (X/y) ∈ R to
d1, ...,dn.

Note that in many cases we will use the simpler but less powerful rule

∀(X/y) ∈ R. (∀x ∈ X . P(x))⇒ P(y)

∀x ∈ IR. P(x)
(4.10)

In fact, if the latter applies, also the former does, since the implication in the
premise must be proved in fewer cases: only for rules X/y such that all the formulas
in X are theorems. However, usually it is difficult to take advantage of the restriction.

Example 4.14 (Determinism of IMP commands). We have seen in Example 4.12
that structural induction can be conveniently used to prove that the evaluation of
arithmetic expressions is deterministic. Formally, we were proving the predicate P(·)
over arithmetic expressions defined as

P(a) def
= ∀σ .∀m,m′. 〈a,σ〉 → m∧〈a,σ〉 → m′⇒ m = m′

While the case of boolean expressions is completely analogous, for commands
we cannot use the same proof strategy, because structural induction cannot deal with
the rule (whtt). In this example, we show that rule induction provides a convenient
strategy to solve the problem.

Let us consider the following predicate over theorems, i.e., statements of the form
〈c,σ〉 → σ ′:

Q(〈c,σ〉 → σ
′) def
= ∀σ1 ∈ Σ . 〈c,σ〉 → σ1⇒ σ

′ = σ1

We proceed by rule induction:

rule skip): we want to show that

Q(〈skip,σ〉 → σ)
def
= ∀σ1. 〈skip,σ〉 → σ1⇒ σ1 = σ

which is obvious because there is only one rule applicable to skip:

〈skip,σ〉 → σ1 ↖σ1=σ 2
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rule assign): assuming
〈a,σ〉 → m

we want to show that

Q(〈x := a,σ〉 → σ [m/x])
def
= ∀σ1. 〈x := a,σ〉 → σ1⇒ σ1 = σ [m/x]

Let us take a generic memory σ1 and assume the premise 〈x :=
a,σ〉 → σ1 of the implication holds. We proceed in a goal oriented
way. We have

〈x := a,σ〉 → σ1 ↖
σ1=σ [m

′
/x]

〈a,σ〉 → m′

But we know that the evaluation of arithmetic expressions is deter-
ministic and therefore m′ = m and σ1 = σ [m/x].

rule seq): assuming

Q(〈c0,σ〉 → σ
′′) def

= ∀σ ′′1 . 〈c0,σ〉 → σ
′′
1 ⇒ σ

′′ = σ
′′
1

Q(〈c1,σ
′′〉 → σ

′) def
= ∀σ1. 〈c1,σ

′′〉 → σ1⇒ σ
′ = σ1

we want to show that

Q(〈c0;c1,σ〉 → σ
′) def
= ∀σ1. 〈c0;c1,σ〉 → σ1⇒ σ1 = σ

′

We assume the premise 〈c0;c1,σ〉 → σ1 and prove that σ1 = σ ′. We
have

〈c0;c1,σ〉 → σ1 ↖ 〈c0,σ〉 → σ
′′
1 , 〈c1,σ

′′
1 〉 → σ1

But now we can apply the first inductive hypothesis:

Q(〈c0,σ〉 → σ
′′) def

= ∀σ ′′1 . 〈c0,σ〉 → σ
′′
1 ⇒ σ

′′
1 = σ

′′

to conclude that σ ′′1 = σ ′′, which together with the second inductive
hypothesis

Q(〈c1,σ
′′〉 → σ

′) def
= ∀σ1. 〈c1,σ

′′〉 → σ1⇒ σ1 = σ
′

allows us to conclude that σ1 = σ ′.
rule iftt): assuming

〈b,σ〉 → true

Q(〈c0,σ〉 → σ
′) def

= ∀σ1. 〈c0,σ〉 → σ1⇒ σ1 = σ
′

we want to show that
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Q(〈if b then c0 else c1,σ〉 → σ ′) def
=

∀σ1. 〈if b then c0 else c1,σ〉 → σ1⇒ σ1 = σ ′

Since 〈b,σ〉 → true and the evaluation of boolean expressions is
deterministic, we have

〈if b then c0 else c1,σ〉 → σ1 ↖∗ 〈c0,σ〉 → σ1

But then, exploiting the inductive hypothesis

Q(〈c0,σ〉 → σ
′) def
= ∀σ1. 〈c0,σ〉 → σ1⇒ σ1 = σ

′

we can conclude that σ1 = σ ′.
rule ifff): omitted (it is analogous to the previous case).
rule whff): assuming

〈b,σ〉 → false

we want to show that

Q(〈while b do c,σ〉→σ)
def
= ∀σ1. 〈while b do c,σ〉→σ1⇒σ1 =σ

Since 〈b,σ〉 → false and the evaluation of boolean expressions is
deterministic, we have

〈while b do c,σ〉 → σ1 ↖∗σ1=σ 2

rule whtt): assuming

〈b,σ〉 → true

Q(〈c,σ〉 → σ
′′) def

= ∀σ ′′1 . 〈c,σ〉 → σ
′′
1 ⇒ σ

′′
1 = σ

′′

Q(〈while b do c︸ ︷︷ ︸
w

,σ ′′〉 → σ
′) def

= ∀σ1. 〈w,σ ′′〉 → σ1⇒ σ1 = σ
′

we want to show that

Q(〈w,σ〉 → σ
′) def
= ∀σ1. 〈w,σ〉 → σ1⇒ σ1 = σ

′

Since 〈b,σ〉 → true and the evaluation of boolean expressions is
deterministic, we have

〈w,σ〉 → σ1 ↖∗ 〈c,σ〉 → σ
′′
1 , 〈w,σ ′′1 〉 → σ1

But now we can apply the first inductive hypothesis:

Q(〈c,σ〉 → σ
′′) def

= ∀σ ′′1 . 〈c,σ〉 → σ
′′
1 ⇒ σ

′′
1 = σ

′′
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to conclude that σ ′′1 = σ ′′, which together with the second inductive
hypothesis

Q(〈w,σ ′′〉 → σ
′) def
= ∀σ1. 〈w,σ ′′〉 → σ1⇒ σ1 = σ

′

allow us to conclude that σ1 = σ ′.

4.2 Well-Founded Recursion

We conclude this chapter by presenting the concept of well-founded recursion. A
recursive definition of a function f is well-founded when the recursive calls to f take
as arguments values that are smaller w.r.t. the ones taken by the defined function
(according to a suitable well-founded relation). A special class of functions defined
on natural numbers according to the principle of well-founded recursion is that of
primitive recursive functions.

Definition 4.18 (Primitive recursive functions). The primitive recursive functions
are those (n-ary) functions over natural numbers obtained according to (any finite
application of) the following rules:

zero: The constant 0 is primitive recursive.
succ.: The successor function s : N→ N with s(n) = n+1 is primitive recursive.
proj.: For any i,k ∈ N,1≤ i≤ k, the projection functions πk

i : Nk→ N with

π
k
i (n1, ...,nk) = ni

are primitive recursive.
comp.: Given a k-ary primitive recursive function f : Nk → N, and k primitive

recursive functions g1, ...,gk : Nm → N of arity m, the m-ary function
h obtained by composing f with g1, ...,gk as shown below is primitive
recursive:

h(n1, ...,nm)
def
= f (g1(n1, ...,nm), ...,gk(n1, ...,nm))

pr.rec.: Given a k-ary primitive recursive function f : Nk → N and a (k+ 2)-ary
primitive recursive function g : Nk+2 → N, the (k + 1)-ary function h :
Nk+1→ N defined as the primitive recursion of f and g below is primitive
recursive:

h(0,n1, ...,nk) = f (n1, ...,nk)

h(s(n),n1, ...,nk) = g(n,h(n,n1, . . . ,nk),n1, . . . ,nk)

Note that π1
1 : N→ N is the usual identity function. It can be proved that every

primitive recursive function is total and computable.

Example 4.15. Addition can be recursively defined with the rules
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add(0,m)
def
= m

add(n+1,m)
def
= add(n,m)+1

This does not fit immediately into the above scheme of primitive recursive func-
tions, but we can rephrase the definition as:

add(0,n1)
def
= π

1
1 (n1)

add(s(n),n1)
def
= s(π3

2 (n,add(n,n1),n1))

In the primitive recursive style, add plays the role of h, the identity function π1
1 plays

the role of f and the composition of s with π3
2 plays the role of g (so that it receives

the unnecessary arguments n and n1).

Let us make well-founded recursion more precise.

Definition 4.19 (Set of predecessors). Given a well-founded relation ≺ ⊆ A×A,
the set of predecessors of a set I ⊆ A is the set

≺−1 I = {b ∈ A | ∃a ∈ I. b≺ a}
For I ⊆ A and f : A→ B, we denote by f � I the restriction of f to values in I, i.e.,

f � I : I→ B and ( f � I)(a) = f (a) for any a ∈ I.

Theorem 4.6 (Well-founded recursion). Let ≺⊆ A×A be a well-founded relation
over A. Let us consider a function F with F(a,h) ∈ B for any

• a ∈ A
• h : (≺−1{a})→ B (i.e., h is any function whose domain is the set of predecessors

of a and whose codomain is B)

Then, there exists one and only one function f : A→ B which satisfies the equation

∀a ∈ A. f (a) = F(a, f � (≺−1{a}))

Proof. The proof is divided in two parts: 1) we first demonstrate that if such a
function f exists, then it is unique; and 2) we prove its existence.

1. Uniqueness follows if we can prove the predicate ∀a. P(a), where

P(a) def
= ( ∀y≺∗ a. ( f (y) = F(y, f � (≺−1{y})) ∧ g(y) = F(y,g � (≺−1{y})) ) )
⇒ f (a) = g(a)

In fact, suppose there are two functions f ,g : A→ B such that

∀a ∈ A. f (a) = F(a, f � (≺−1{a}))
∀a ∈ A. g(a) = F(a,g � (≺−1{a}))

Clearly, for any a ∈ A the premise
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( ∀y≺∗ a. ( f (y) = F(y, f � (≺−1{y})) ∧ g(y) = F(y,g � (≺−1{y})) ) )

is true and thus we can conclude f (a) = g(a).
The proof that ∀a. P(a) goes by well-founded induction on ≺. For a ∈ A, we
assume that ∀b≺ a. P(b) and we want to prove P(a). Suppose that

( ∀y≺∗ a. ( f (y) = F(y, f � (≺−1{y})) ∧ g(y) = F(y,g � (≺−1{y})) ) )

We need to prove that f (a) = g(a). For b≺ a we must have f (b) = g(b), because
P(b) holds by the inductive hypothesis. Thus

f � (≺−1{a}) = g � (≺−1{a})

and therefore

f (a) = F(a, f � (≺−1{a})) = F(a,g � (≺−1{a})) = g(a)

2. For existence, we build a family of functions{
fa : (≺∗−1{a})→ B

}
a∈A

and then take f def
=
⋃

a∈A fa. The existence of the functions fa is guaranteed by
proving that the following property holds for all x ∈ A:

Q(x) def
= ∃ fx : (≺∗−1{x})→ B. ∀y≺∗ x. fx(y) = F(y, fx � (≺−1{y}))

The proof goes by well-founded recursion. We assume ∀b≺ a. Q(b) and prove
that Q(a) holds. Let b≺ a and fb : (≺∗−1{b})→ B be the function such that

∀y≺∗ b. fb(y) = F(y, fb � (≺−1{y})).

We build a relation h⊆ A×B defined by

h def
=
⋃
b≺a

fb

Now for any b≺ a there is at least one pair of the form (b,c) ∈ h for some c ∈ B,
because b≺∗ b. By the uniqueness property proved before, we have that such a
pair is unique. Hence h satisfies the function property. Finally, we let

fa
def
= h∪{(a,F(a,h))}

to get a function fa : (≺∗−1{a})→ B such that

∀y≺∗ a. fa(y) = F(y, fa � (≺−1{y}))

proving that Q(a) holds. ut
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Theorem 4.6 guarantees that, if we (recursively) define f over any a ∈ A only in
terms of the predecessors of a, then f is uniquely determined on all a. Notice that F
has a dependent type, since the type of its second argument depends on the value of
its first argument.

In the following chapters we will exploit fixpoint theory to define the semantics of
recursively defined functions. Well-founded recursion gives a simpler method, which
however works only in the well-founded case.

Example 4.16 (Product as primitive recursion). Let us consider the Peano formula
that defines the product of natural numbers:

p(0,y) def
= 0

p(x+1,y) def
= y+ p(x,y)

Let us write the definition in a slightly different way:

py(0)
def
= 0

py(x+1) def
= y+ py(x)

Let us recast the Peano formula seen above in the formal scheme of well-founded
recursion:

py(0)
def
= Fy(0, py �∅) = 0

py(x+1) def
= Fy(x+1, py � (≺−1{x+1})) = y+ py(x)

Example 4.17 (Structural recursion). Let us consider the signature Σ for binary trees
A = TΣ , where Σ0 = {0,1, ...} and Σ2 = cons (where cons(x,y) is the constructor
for building a tree out of its left and right subtrees). Take the well-founded relation
xi ≺ cons(x1,x2), i = 1,2. Let B = N.

We want to compute the sum of the elements in the leaves of a binary tree. In
Lisp-like notation

sum(x) def
= if atom(x) then x else sum(car(x))+ sum(cdr(x))

where atom(x) returns true if x is a leaf; car(x) denotes the left subtree of x; cdr(x)
the right subtree of x. The same function defined in the structural recursion style is

sum(n) def
= n

sum(cons(x,y)) def
= sum(x)+ sum(y)

or, according to the well-founded recursive scheme,
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F(n,sum �∅) def
= n

F(cons(x,y),sum � {x,y}) def
= sum(x)+ sum(y)

(where we remind that ≺−1 {n}=∅ and ≺−1 {cons(x,y)}= {x,y}).
For example, for q def

= cons(3,cons(cons(2,3),4)) we have

sum(q) = sum(3)+ sum(cons(cons(2,3),4))
= 3+(sum(cons(2,3))+ sum(4))
= 3+((sum(2)+ sum(3))+4)
= 3+((2+3)+4)
= 12

Example 4.18 (Ackermann function). The Ackermann function is one of the earliest
examples of a computable, total recursive function that is not primitive recursive: it
grows faster than any such function. The Ackermann function ack(z,x,y) = acky(z,x)
is defined by well-founded recursion (exploiting the lexicographic precedence rela-
tion over pairs of natural numbers) by letting

ack( 0 , 0 , y ) = y
ack( 0 , x+1 , y ) = ack(0,x,y)+1
ack( 1 , 0 , y ) = 0
ack( z+2 , 0 , y ) = 1
ack( z+1 , x+1 , y ) = ack(z,ack(z+1,x,y),y)

It is immediate to check that from the above definition we have{
ack(0,0,y) = y

ack(0,x+1,y) = ack(0,x,y)+1 ⇒ ack(0,x,y) = y+ x

{
ack(1,0,y) = 0

ack(1,x+1,y) = ack(0,ack(1,x,y),y) = ack(1,x,y)+ y ⇒ ack(1,x,y) = y× x

{
ack(2,0,y) = 1

ack(2,x+1,y) = ack(1,ack(2,x,y),y) = ack(2,x,y)× y ⇒ ack(2,x,y) = yx

Intuitively: ack(1,x,y) applies addition of y for x times, ack(2,x,y) applies multi-
plication by y for x times, ack(3,x,y) applies exponentiation to the yth power for x
times, and so on. For example, we have

ack(0,0,0) = 0+0 = 0 ack(1,1,1) = 1×1 = 1
ack(2,2,2) = 22 = 4 ack(3,3,3) = 333

= 327 ' 7.6×1012
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Problems

4.1. Consider the logical system R corresponding to the rules of the grammar

S ::= aB | bA A ::= a | aS | bAA B ::= b | bS | aBB

where the well-formed formulas are of the form x ∈ LX , where X is either S or A or
B and where x is a string on the alphabet {a,b}.
1. Write down explicitly the rules in R.
2. Prove by rule induction—in one direction—and by mathematical induction on

the length of the strings—in the other direction—that the strings generated by
S are all the nonempty strings with the same number of as and bs (i.e., prove
the formal predicate P(x ∈ LS)

def
= x|a = x|b 6= 0, where x|s denotes the number of

occurrences of the symbol s in the string x), while A generates all the strings with
an additional a (formally P(x ∈ LA)

def
= x|a = 1+ x|b) and B with an additional b.

3. Finally prove by induction on derivations that

P(d/(x ∈ LX ))
def
= |d| ≤ |x|

i.e., the depth of any derivation d is less than or equal to the length of the string x
generated by it.

4.2. Define by well-founded recursion the function

locs : Com−→℘(Loc)

that, given a command, returns the set of locations that appear on the left-hand side
of some assignment.

Then, prove that ∀c ∈Com, ∀σ ,σ ′ ∈ Σ

〈c,σ〉 → σ
′ implies ∀y 6∈ locs(c). σ(y) = σ

′(y).

4.3. Let w denote the IMP command

w def
= while x 6= 0 do (x := x−1 ; y := y+1).

Prove by rule induction that ∀σ ,σ ′ ∈ Σ

〈w,σ〉 → σ
′ implies σ(x)≥ 0 ∧ σ

′ = σ

[
σ(x)+σ(y)/y,

0 /x

]
.

4.4. Let R be a binary relation over the set A, i.e., R ⊆ A×A. Let R+, called the
transitive closure of R, be the relation defined by the following two rules:

x R y
x R+ y

x R+ y y R+ z
x R+ z
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1. Prove that for any x and y

x R+ y ⇔ ∃k > 0. ∃z0, . . . ,zk. x = z0 ∧ z0 R z1 ∧ . . .∧ zk−1 R zk ∧ zk = y

(Hint: Prove the implication ⇒ by rule induction and the implication ⇐ by
induction on the length k of the R-chain.)

2. Give the rules that define instead a relation R′ such that

x R′ y ⇔ ∃k ≥ 0. ∃z0, . . . ,zk. x = z0 ∧ z0 R z1 ∧ . . .∧ zk−1 R zk ∧ zk = y.

4.5. Let IMP− be the language obtained from IMP by removing the while construct.
Exploit the operational semantics to prove that in IMP−, for every command c the
termination property

∀σ ∈ Σ . ∃σ ′ ∈ Σ . 〈c,σ〉 → σ
′

holds.

4.6. Let us consider the following rules, where m, n and k are positive natural
numbers.

(m,m)→ m
(n,m)→ k
(m,n)→ k

m < n
(m−n,n)→ k
(m,n)→ k

m > n

Prove by rule induction that, for any n,m,k > 0,

(m,n)→ k implies k = gcd(m,n).

where gcd(m,n) denotes the greatest common divisor of m and n, i.e., if we write
d| j to mean that d divides j (in other words, that there exists h such that j = d×h),
then gcd(n,m) is the natural number d such that d|m∧d|n and for any d′ such that
d′|m∧d′|n we have d′ ≤ d.
(Hint: Prove that any common divisor of m and n with m > n is also a common
divisor of m−n and n and vice versa.)

4.7. Prove that, according to the operational semantics of IMP, for any boolean
expression b, command c and stores σ , σ ′

〈while b do c,σ〉 → σ
′ implies 〈b,σ ′〉 → false

Explain which induction principle you exploit in the proof.

4.8. Exploit the property from Problem 4.7 to prove that for any b ∈ Bexp and
c ∈Com we have c1 ∼ c2 ∼ c3 where

c1
def
= while b do c

c2
def
= while b do (c ;while b do c)

c3
def
= (while b do c) ; while b do c
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4.9. Define by well-founded recursion the function

locs : Aexp−→℘(Loc)

that, given an arithmetic expression a, returns the set of locations that occur in a. Use
structural induction to show that ∀a ∈ Aexp. ∀σ ,σ ′ ∈ Σ . ∀n,m ∈ Z

〈a,σ〉 → n ∧ 〈a,σ ′〉 → m ∧ ∀x ∈ locs(a). σ(x) = σ
′(x) implies n = m.

4.10. Consider the IMP program

w def
= while ¬(x = y) do (x := x+1 ; y := y−1)

Define the set of stores T = {σ | ...} for which the program w terminates and

1. Prove formally that for any store σ ∈ T there exists σ ′ such that 〈w,σ〉 → σ ′.
(Hint: use well-founded induction on T .)

2. Prove (by using the rule for divergence) that ∀σ 6∈ T. 〈w,σ〉 6→ .

4.11. Let us consider the IMP command

w def
= while x 6= 0 do x := x− y.

1. Prove that, for any σ ,σ ′, if 〈w,σ〉 → σ ′ then there exists an integer k such that
σ(x) = k×σ(y).

2. Give a store σ such that σ(x) = k×σ(y) for some integer k but such that 〈w,σ〉 6→.
Explain why the program diverges for the given σ .

3. Define a command c such that, for any σ ,σ ′, 〈c,σ〉 → σ ′ iff σ(x) = k×σ(y) for
some integer k. Sketch the proof of the double implication.

4.12. Recall that the height or depth of a derivation d is recursively defined as follows:

depth(∅/y) def
= 1

depth({d1, ...,dn}/y) def
= 1+max{depth(d1), ...,depth(dn)}

Given the IMP command

w def
= while x > 0 do x := x−1

prove by induction on n that for any σ ∈ Σ with σ(x) = n≥ 0 the derivation of

〈w,σ〉 → σ
′

has depth n+3.

4.13. The binomial coefficients
(

n
k

)
, with n,k ∈ N and 0≤ k ≤ n, are defined by:
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n
0

)
def
= 1

(
n
n

)
def
= 1

(
n+1
k+1

)
def
=

(
n
k

)
+

(
n

k+1

)
Prove that the above definition is given by well-founded recursion, specifying the
well-founded relation and the corresponding function F(b,h).

4.14. Consider the well-known sequence of Fibonacci numbers, defined as

F(0) def
= 1 F(1) def

= 1 F(n+2) def
= F(n+1)+F(n)

where n ∈ N. Explain why the above definition is given by well-founded recursion
and make explicit the well-founded relation to be used.



Chapter 5
Partial Orders and Fixpoints

Good old Watson! You are the one fixed point in a changing age.
(Sherlock Holmes)

Abstract This chapter is devoted to the introduction of the foundations of the denota-
tional semantics of computer languages. The concepts of complete partial orders with
bottom and of monotone and continuous functions are introduced and then the main
fixpoint theorem is presented. The chapter is concluded by studying the immediate
consequence operator, which is used to relate logical systems and fixpoint theory.

5.1 Orders and Continuous Functions

As we have seen, the operational semantics gives us a very concrete semantics, since
the inference rules describe step by step the bare essential operations on the state
required to reach the final state of computation. Unlike the operational semantics, the
denotational one provides a more abstract view. Indeed, the denotational semantics
gives us directly the meaning of the constructs of the language as particular functions
over domains. Domains are sets whose structure will ensure the correctness of the
constructions of the semantics.

As we will see, one of the most attractive features of the denotational semantics is
that it is compositional, namely, the meaning of a composite program is given by com-
bining the meanings of its constituents. The compositional property of denotational
semantics is obtained by defining the semantics by structural recursion. Obviously
there are particular issues in defining the interpretation of the “while” construct of
IMP, since the semantics of this construct, as we saw in the previous chapters, is
inherently recursive. General recursion is forbidden in structural recursion, which
allows only the use of subterms. The solution to this problem is given by solving
equations of the type x = f (x), namely by finding the fixpoint(s) of suitable functions
f . On the one hand we would like to ensure that each recursive definition that we
introduce has a fixpoint. Therefore we will restrict our study to a particular class of
functions: continuous functions. On the other hand, the aim of the theory we will
develop, called domain theory, will be to identify one solution when more than one is
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available, and to provide an approximation method for computing it, which is given
by the fixpoint theorem (Theorem 5.6).

5.1.1 Orders

We introduce the general theory of partial orders, which will bring us to the concept
of domain.

Definition 5.1 (Partial order). A partial order is a pair (P,vP) where P is a set and
vP⊆ P×P is a binary relation (i.e., it is a set of pairs of elements of P) which is

reflexive: ∀p ∈ P. pvP p
antisymmetric: ∀p,q ∈ P. pvP q∧qvP p =⇒ p = q
transitive: ∀p,q,r ∈ P. pvP q∧qvP r =⇒ pvP r

We call (P,vP) a poset (for partially ordered set).

We will conveniently omit the subscript P from vP when no confusion can arise.
We write p < q when pv q and p 6= q.

Example 5.1 (Powerset). Let (℘(S),⊆) be the powerset of a set S together with the
inclusion relation. It is easy to see that (℘(S),⊆) is a poset.

reflexive: ∀s⊆ S. s⊆ s
antisymmetric: ∀s1,s2 ⊆ S. s1 ⊆ s2 ⊆ s1⇒ s1 = s2
transitive: ∀s1,s2,s3 ⊆ S. s1 ⊆ s2 ⊆ s3⇒ s1 ⊆ s3

Actually, partial orders are a generalisation of the concept of powerset ordered by
inclusion. Thus we should not be surprised by this result.

Remark 5.1 (Partial orders vs well-founded relations). Partial order relations should
not be confused with the well-founded relations studied in the previous chapter. In
fact

• Any well-founded relation (on a nonempty set) is not reflexive (otherwise an
infinite descending chain could be constructed by iterating over the same element).

• Any well-founded relation is antisymmetric (the premise pv q∧qv p must be
always false, otherwise an infinite descending chain could be constructed).

• A well-founded relation can be transitive, but it is not necessarily so (e.g., the
immediate precedence relation over natural numbers is well-founded but not
transitive; instead the ‘less than’ relation is well-founded and transitive).

• Any (nonempty) partial order has an infinite descending chain (take any element
p and the chain pw pw p . . .) and is thus non-well-founded.

• If we take the relation < induced by a partial orderv, then it can be well-founded,
but it is not necessarily so (e.g., the strict inclusion relation over ℘(N) has an
infinite descending chain whose ith element is the set {n | n ∈ N∧n≥ i}).
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• If we take the reflexive and transitive closure≺∗ of a well-founded relation≺, then
it is a partial order (reflexivity and transitivity are obvious; for the antisymmetric
property, suppose that there were two elements p 6= q such that p≺∗ q∧q≺∗ p
then there would be a cycle over p using ≺, contradicting the assumption that ≺
is well-founded).

Two elements p,q ∈ P are called comparable if pv q or qv p. When any two
elements of a partial order are comparable, then it is called a total order.

Definition 5.2 (Total order). Let (P,v) be a partial order such that

∀p,q ∈ P. pv q ∨ qv p

We call (P,v) a total order.

Example 5.2. Given a set S, its powerset (℘(S),⊆) ordered by inclusion is a total
order if and only if |S| ≤ 1. In fact, in one direction suppose that (℘(S),⊆) is a total
order and take p,q ∈ S; clearly {p} ⊆ {q}∨{q} ⊆ {p} holds only when p = q, i.e.,
S must have at most one element. Vice versa, if S =∅ then ℘(S) = {∅} and ∅⊆∅;
if S = {p} for some p, then ℘(S) = {∅,{p}} and ∅⊆∅⊆ {p} ⊆ {p}.
Theorem 5.1 (Subsets of an order). Let (P,vP) be a partial order and let Q ⊆ P.

Then (Q,vQ) is a partial order, with vQ
def
= vP ∩(Q×Q). Similarly, if (P,vP) is a

total order then (Q,vQ) is a total order.

The proof is left as an easy exercise for the reader (see Problem 5.1).
Let us see some examples that will be very useful in understanding the concepts

of partial and total orders.

Example 5.3 (Natural Numbers). Let (N,≤) be the set of natural numbers with the
usual order; (N,≤) is a total order.

reflexive: ∀n ∈ N. n≤ n
antisymmetric: ∀n,m ∈ N. n≤ m∧m≤ n =⇒ m = n
transitive: ∀n,m,z ∈ N. n≤ m∧m≤ z =⇒ n≤ z
total: ∀n,m ∈ N. n≤ m∨m≤ n

Example 5.4 (Discrete order). Let (P,v) be a partial order defined as follows:

∀p ∈ P. pv p

We call (P,v) a discrete order.

Example 5.5 (Flat order). A flat order is a partial order (P,v) for which there exists
an element ⊥ ∈ P such that

∀p,q ∈ P. pv q ⇔ p =⊥∨ p = q

The element ⊥ is called bottom and it is unique. In fact, suppose that two such ele-
ments⊥1,⊥2 exist. Then, we have⊥1 v⊥2 and also⊥2 v⊥1; thus by antisymmetry
we have ⊥1 =⊥2.
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5.1.2 Hasse Diagrams

The aim of this section is to provide a tool that allows us to represent orders in a
comfortable way.

First of all we might think to use graphs to represent an order. In this framework
each element of the order is represented by a node of the graph and the order relation
by the arrows (i.e., we have an arrow from a to b if and only if av b).

This notation is not very manageable, indeed we repeat many times redundant
information. For example in the usual order on natural numbers we would have n+1
incoming arrows and infinitely many outgoing arrows for a node labelled by n. We
need a more compact notation, which leaves implicit some information that can be
inferred by exploiting the properties of partial orders. This notation is represented
by Hasse diagrams. The idea is to omit 1) every reflexive arc (from a node to itself),
because we know by reflexivity that such an arc is present for every node; and 2)
every arc from a to c when there is a node b with an arc from a to b and one from b
to c, because the presence of the arc from a to c can be inferred by transitivity.

Definition 5.3 (Hasse diagram). Given a poset (P,v), let R be the binary relation
defined by:

xv y yv z x 6= y 6= z

xRz

∅

xRx

We call a Hasse diagram the relation H defined as

H def
= v \ R

Note that the first rule can be written more concisely as

x < y y < z

xRz

The Hasse diagram omits the information deducible by transitivity and reflexivity.
A simple example of a Hasse diagram is in Figure 5.1.

To ensure that all the needed information is contained in the Hasse diagram we
rely on the following theorem.

Theorem 5.2 (Order relation, Hasse diagram equivalence). Let (P,v) be a par-
tial order with P a finite set, and let H be its Hasse diagram. Then, the transitive and
reflexive closure H∗ of H is equal to v.

Proof. Formally, we want to prove the two inclusions H∗ ⊆ v and v ⊆ H∗

separately, where the relation H∗ is defined by the inference rules below:

xH∗ x
xH y
xH∗ y

xH∗ y∧ yH∗ z
xH∗ z

H∗ ⊆ v: Suppose x H∗ y. Then, there exist (see Problem 4.4) k ∈N and z0, . . . ,zk
such that
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{a,b,c}
$$

{a,b}
$$
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{a,c}
zz
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{b,c}
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dd
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(a) ℘({a,b,c}) ordered by inclusion

{a,b,c}

{a,b}

::

{a,c}

OO

{b,c}

dd

{a}

OO ::

{b}

dd ::

{c}

dd OO

∅

dd OO ::

(b) Hasse diagram for ℘({a,b,c})

Fig. 5.1: Hasse diagram for the powerset over {a,b,c} ordered by inclusion

x = z0 ∧ z0 H z1 ∧ . . .∧ zk−1 H zk ∧ zk = y

Since H ⊆ v by definition, we have

x = z0 ∧ z0 v z1 ∧ . . .∧ zk−1 v zk ∧ zk = y

Hence, by transitivity of v it follows that xv y.
v ⊆ H∗: Given xv y, let us denote by ]x,y[ the set of elements strictly contained

between x and y, i.e.,

]x,y[ def
= {z | x < z ∧ z < y}.

Clearly ]x,y[ is finite because P is finite. We prove that xH∗ y by mathe-
matical induction on the number of elements in ]x,y[.

Base case: When ]x,y[ is empty, it means that (x,y) 6∈ R. Hence
xH y and thus xH∗ y.

Inductive case: Suppose ]x,y[ has n + 1 elements. Take z ∈ ]x,y[.
Clearly the sizes of ]x,z[ and ]z,y[ are strictly smaller
than that of ]x,y[, and since x < z and z < y, by the
inductive hypothesis it follows that xH∗ z and zH∗ y.
Hence xH∗ y. ut

The above theorem only allows us to represent finite orders.

Example 5.6 (Infinite order). Let us see that Hasse diagrams do not work well with
infinite orders. Let Ω = (N∪{∞},≤) be the usual order on natural numbers extended
with a top element ∞ such that n≤ ∞ and ∞≤ ∞, i.e.,

0≤ 1≤ 2≤ ·· · ≤ n≤ ·· · ≤ ∞
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(b) H induced by (N∪{∞},≤)
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(c) H∗ induced by (N∪{∞},≤)

Fig. 5.2: Infinite orders and Hasse diagrams

From Definition 5.3 it follows that for any n ∈N we have nR∞ (because n < n+1 <
∞) and that for any n,k ∈N it holds that nRn+2+k (because n < n+1 < n+2+k).
Moreover, for any x ∈ N∪ {∞} we have xRx. In particular, the Hasse diagram
eliminates the arc between each natural number and ∞. Now using the transitive and
reflexive closure we would like to get back the original order. Using the inference
rules we obtain the usual order on natural numbers without any relation between ∞

and the natural numbers (recall that we only allow finite proofs). The situation is
illustrated in Figure 5.2

Definition 5.4 (Least element). Let (P,vP) be a partial order and take Q ⊆ P. An
element ` ∈ Q is a least element of (Q,vQ) if

∀q ∈ Q. `vQ q

Example 5.7 (No least element). Let us consider the order associated with the Hasse
diagram

d e

a

@@

b

^^ @@

c

^^

The sets {a,b,d} and {a,b,c,d,e} have no least element. As we will see, the elements
a,b and c are minimal since they have no smaller elements in the order.

Theorem 5.3 (Uniqueness of the least element). Let (P,v) be a partial order. P
has at most one least element.
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Proof. Let `1, `2 ∈ P both be least elements of P, then `1 v `2 and `2 v `1. Now by
using the antisymmetric property we get `1 = `2. ut

The counterpart of the least element is the concept of greatest element. We can
define the greatest element as the least element of the reverse order v−1 (defined by
letting xv−1 y ⇔ yv x).

Definition 5.5 (Minimal element). Let (P,vP) be a partial order and take Q ⊆ P.
An element m ∈ Q is a minimal element of (Q,vQ) if

∀q ∈ Q. qvQ m⇒ q = m

As for the least element we have the dual of minimal elements, called maximal
elements: They are the minimal elements of the reverse order v−1.

Remark 5.2 (Least vs minimal elements). Note that the definition of minimal and
least element (maximal and greatest) are quite different:

• The least element ` is the (unique) smallest element of a set.
• A minimal element m is just such that no smaller element can be found in the

set, i.e., ∀q ∈ Q.q 6< m (but there is no guarantee that all the elements q ∈ Q are
comparable with m).

• The least element of an order is obviously minimal, but a minimal element is not
necessarily the least.

Definition 5.6 (Upper bound). Let (P,v) be a partial order and Q⊆ P be a subset
of P, then u ∈ P is an upper bound of Q if

∀q ∈ Q. qv u

Note that unlike a maximal element and the greatest element an upper bound does
not necessarily belong to the subset Q of elements we are considering.

Definition 5.7 (Least upper bound). Let (P,v) be a partial order and Q ⊆ P be a
subset of P. Then, p ∈ P is the least upper bound (lub) of Q if and only if p is the
least element of the upper bounds of Q. Formally, we require that

1. p is an upper bound of Q (∀q ∈ Q. qv p);
2. for any upper bound u of Q, then pv u (∀u ∈ P. (∀q ∈ Q. qv u)⇒ pv u);

and we write lub(Q) = p.

It follows immediately from Theorem 5.3 that the least upper bound, when it
exists, is unique.

Example 5.8 (lub). Now we will clarify the concept of lub with two examples. Let
us consider the order represented by the Hasse diagram in Figure 5.3 (a). The set of
upper bounds of the subset {b,c} is the set {h, i,>}. This set has no least element
(i.e., h and i are not comparable) so the set {b,c} has no lub. In Figure 5.3 (b) we see
that the set of upper bounds of the set {a,b} is the set { f ,h, i,>}. The least element
of the latter set is f , which is thus the lub of {a,b}.
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(b) The subset {a,b} has lub f

Fig. 5.3: Two subsets of a poset, and their upper bounds

5.1.3 Chains

One of the main concepts in the study of partial orders is that of a chain, which is
formed by taking a subset of totally ordered elements.

Definition 5.8 (Chain). Let (P,v) be a partial order, we call a chain a function
C : N→ P such that

∀n ∈ N. C(n)vC(n+1)

We will often write C = {di}i∈N, where ∀i ∈ N. di =C(i), i.e.,

d0 v d1 v d2 . . .

Definition 5.9 (Finite chain). Let C : N→ P be a chain such that the image of C is
a finite set, then we say that C is a finite chain. Otherwise we say that C is infinite.

Note that a finite chain still has infinitely many elements {di}i∈N, but only finitely
many different ones. In particular, it has one index k and one element d such that
∀i ∈ N. dk+i = d.

Example 5.9 (Finite and infinite chains). Take the partial order (N,≤). The chain of
even numbers

0≤ 2≤ 4≤ ·· ·
is an infinite chain. Instead, the constant chain

1≤ 1≤ 1≤ ·· ·

is a finite chain.
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Definition 5.10 (Limit of a chain). Let C be a chain. The lub of the image of C, if
it exists, is called the limit of C. If d is the limit of the chain C = {di}i∈N, we write
d =

⊔
i∈N di.

Remark 5.3. Each finite chain has a limit. Indeed each finite chain has a finite totally
ordered image: obviously this set has a lub (the greatest element of the set).

Lemma 5.1 (Prefix independence of the limit). Let n ∈ N and let C and C′ be two
chains such that C = {di}i∈N and C′ = {dn+i}i∈N. Then C and C′ have the same limit,
if any.

Proof. Let us prove a stronger property, namely that the chains C and C′ have the
same set of upper bounds.

Obviously if c is an upper bound of C, then c is an upper bound of C′, since each
element of C′ is contained in C.

Vice versa if c is an upper bound of C′, we need to show that ∀ j ∈ N. j ≤ n⇒
d j v c. Since dn v c and ∀ j ∈N. j ≤ n⇒ d j v dn by transitivity of v it follows that
c is an upper bound of C.

Now since C and C′ have the same set of upper bound elements, they have the
same lub, if it exists at all. ut

The main consequence of Lemma 5.1 is that we can always eliminate from or add
a finite prefix to a chain preserving the limit.

A stronger result guarantees that any infinite subsequence of a chain C has the
same set of upper bounds as C and thus the same limit, if any (see Problem 5.13).

5.1.4 Complete Partial Orders

The aim of partial orders and continuous functions is to provide a framework that
allows the definition of the denotational semantics when recursive equations are
needed. Complete partial orders extend the concept of partial orders to support the
limit operation on chains, which is a generalisation of the countable union operation
on a powerset. Limits will have a key role in finding fixpoint solutions to recursive
equations.

Definition 5.11 (Complete partial orders). Let (P,v) be a partial order. We say
that (P,v) is complete (CPO) if each chain has a limit (i.e., each chain has a lub).

From Remark 5.3, it follows immediately that if a partial order has only finite
chains then it is complete.

Definition 5.12 (CPO with bottom). Let (D,v) be a CPO, we say that (D,v) is a
CPO with bottom (CPO⊥) if it has a least element ⊥ (called bottom).

Let us see some examples that will clarify the concept of CPO. To avoid ambigui-
ties, sometimes we will denote the bottom element of the CPO D by ⊥D.
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Example 5.10 (Powerset completeness). Let us consider again the previous example
of powerset (Example 5.1). We show that the partial order (℘(S),⊆) is complete.
Take any chain {Si}i∈N of subsets of S. Then:

lub(S0 ⊆ S1 ⊆ S2 . . .) = {d | ∃k ∈ N. d ∈ Sk}=
⋃
i∈N

Si ∈℘(S)

Example 5.11 (Partial order without upper bounds). Now let us take the usual order
on natural numbers (N,≤). Obviously all its finite chains have a limit (i.e., the
greatest element of the chain). Vice versa infinite chains have no limits (i.e., there
is no natural number greater than infinitely many natural numbers). To make the
order a CPO all we have to do is to add an element greater than all the natural
numbers. So we add the element ∞ and extend the order relation by letting x≤ ∞ for
all x ∈ N∪{∞}. The new poset (N∪{∞},≤) is a CPO, because ∞ is the limit of any
infinite chain.

Remark 5.4 (A subset of a CPO is not necessarily a CPO). We have seen that when
we restrict an order relation to a subset of elements we still get a PO (see Theorem 5.1).
The previous example shows that, in general, the same property does not hold at the
level of CPOs. The problem is due to the fact that, given a chain whose elements are
all in the subset, the lub of the chain is not necessarily in the subset.

Example 5.12 (Partial order without least upper bound). Let us define the partial
order (N∪{∞1,∞2},v) as follows:

(v� N) =≤, ∀x ∈ N∪{∞1}. xv ∞1, ∀x ∈ N∪{∞2}. xv ∞2

where v� N is the restriction of v to natural numbers. This partial order is not
complete, indeed each infinite chain has two upper bounds (i.e., ∞1 and ∞2) which
are not comparable, hence there is no least upper bound.

The next example illustrates a fundamental CPO that will be exploited in the next
chapters: the set of partial functions on natural numbers.

Example 5.13 (Partial functions). Let Pf def
= (N⇀ N) be the set of partial functions

from natural numbers to natural numbers. Recall that a partial function is a relation
f ⊆ N×N with the functional property:

∀n,m,k ∈ N. n f m∧n f k ⇒ m = k

So the set Pf can be viewed as:

Pf def
= { f ⊆ N×N | ∀n,m,k ∈ N. n f m∧n f k⇒ m = k}

Let us denote by f (n) ↓ the predicate ∃m ∈N. (n,m) ∈ f (i.e., f (n) ↓ holds when the
function f is defined on n). Now it is easy to define a partial order v on Pf. We let

f v g ⇔ (∀n ∈ N. f (n) ↓ ⇒ (g(n) ↓ ∧ f (n) = g(n)))
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Thus f precedes g if whenever f is defined on n also g is defined on n and f (n)= g(n).
When f (n) is not defined, then g(n) can be defined and take any value. When both
f and g are seen as (functional) relations, then the above definition boils down to
checking that f is included in g. Of course, the poset (℘(N×N),⊆) has the empty
relation as bottom element (i.e., the function undefined everywhere), and each infinite
chain has as limit the countable union of the relations in the chain.

To show that Pf is complete, we need to show that the limits of chains whose
elements are in Pf also satisfy the functional property, i.e., they are elements of Pf.

Theorem 5.4. Let f0 ⊆ f1 ⊆ f2 ⊆ . . . be a chain in Pf, i.e., each relation fi satisfies
the functional property, i.e.,

∀i ∈ N. ∀n,m,k ∈ N. n fi m∧n fi k⇒ m = k

Then, the relation f def
= ∪i∈N fi satisfies the functional property, namely:

∀n,m,k ∈ N. n f m∧n f k⇒ m = k

Proof. Let us take generic n,m,k ∈ N such that the premise n f m∧ n f k of the
implication holds. We need to prove the consequence m = k. By n f m, there exists
j ∈ N with n f j m and, by n f k there exists h ∈ N with n fh k. We take o = max{ j,h},
then it holds that n fo m∧n fo k. Since fo ∈ Pf, it satisfies the functional property and
thus from n fo m∧n fo k we can conclude that m = k. ut

Example 5.14 (Partial functions as total functions). Let us show a second way to
define a CPO on the partial functions on natural numbers. Let N⊥

def
= N∪{⊥} and

(N⊥,vN⊥) be the flat order obtained by adding ⊥ to the discrete order of the natural
numbers. In other words we have x vN⊥ y iff x = y or x = ⊥. Then take the set of
total functions Tf = (N→ N⊥). Equivalently

Tf def
= { f ⊆ N×N⊥ | (∀n,m,k ∈ N. n f m∧n f k⇒ m = k) ∧

(∀n ∈ N. ∃x ∈ N⊥. n f x) }

We define the following order on Tf

f v g ⇔ ∀n ∈ N. f (n)vN⊥ g(n).

That is, if f (n) =⊥ then g(n) can assume any value, including ⊥; otherwise it must
be that g(n) = f (n). The bottom element of the order is the function that returns
⊥ for every argument. Note that the above order is complete. In fact, the limit of a
chain obviously exists as a relation, and it is easy to show, analogously to the partial
function case, that it is in addition a total function. The proof is left as an exercise for
the reader (see Problem 5.11).

Example 5.15 (Limit of a chain of partial functions). Let { fi : N→ N⊥}i∈N be a
chain in Tf such that for any i ∈ N we have
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fi(n)
def
=

{
3 if n≤ i ∧ 2 | n
⊥ otherwise

where the predicate k | n is true when k divides n (i.e., 2 | n is true when n is even and
false otherwise). Let us consider some evaluations of the functions fi with i ∈ [0,4]:

f0(0) = 3 f0(1) =⊥ f0(2) =⊥ f0(3) =⊥ f0(4) =⊥ ·· ·
f1(0) = 3 f1(1) =⊥ f1(2) =⊥ f1(3) =⊥ f1(4) =⊥ ·· ·
f2(0) = 3 f2(1) =⊥ f2(2) = 3 f2(3) =⊥ f2(4) =⊥ ·· ·
f3(0) = 3 f3(1) =⊥ f3(2) = 3 f3(3) =⊥ f3(4) =⊥ ·· ·
f4(0) = 3 f4(1) =⊥ f4(2) = 3 f4(3) =⊥ f4(4) = 3 · · ·

Thus the limit of the chain is the function f that returns 3 when applied to even
numbers and ⊥ otherwise:

f (n) def
=

{
3 if 2 | n
⊥ otherwise

In general, the limit f def
=
⊔

i∈N fi of a chain in Tf is a function f :N→N⊥ such that
f (n) = m for some m 6=⊥ if and only if there exists an index k ∈ N with fk(n) = m.
Note also that when i≤ j and fi(n) 6=⊥ it must be the case that f j(n) = fi(n). On
the contrary, when i≤ j and f j(n) =⊥ it means that fi(n) =⊥.

5.2 Continuity and Fixpoints

5.2.1 Monotone and Continuous Functions

In order to define a class of functions over CPOs which ensures the existence of
their fixpoints we introduce two general properties of functions: monotonicity and
continuity.

Definition 5.13 (Monotonicity). Let (D,vD) and (E,vE) be two CPOs. We say
that a function f : D→ E is monotone if

∀d,d′ ∈ D. d vD d′⇒ f (d)vE f (d′)

We say that a monotone function preserves the order. So if {di}i∈N is a chain in
(D,vD) and f : D→ E is a monotone function, then { f (di)}i∈N is a chain in (E,vE).
Often we will consider functions whose domain and codomain coincide (i.e., E = D),
in which case we just say that f is a function on (D,vD).

Example 5.16 (Non-monotone function). Let us define a CPO ({⊥,0,1},v) such
that ⊥ v 0, ⊥ v 1 and x v x for any x ∈ {⊥,0,1}. Now define a function f on
({⊥,0,1},v) as follows:
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Fig. 5.4: A non-monotone function

f (⊥) = 0 f (0) = 0 f (1) = 1

This function is not monotone, indeed ⊥v 1 but f (⊥) = 0 and f (1) = 1 are not
comparable (see Figure 5.4), so the function f does not preserve the order.

Continuity guarantees that taking the image of the limit of a chain is the same as
taking the limit of the images of the elements in the chain.

Definition 5.14 (Continuity). Let (D,vD) and (E vE) be two CPOs and let f : D→
E be a monotone function. We say that f is a continuous function if for each chain in
(D,v) we have

f (
⊔
i∈N

di) =
⊔
i∈N

f (di)

As is the case for most definitions of continuity, the operations of applying a
function and taking the limit can be exchanged. For this reason, we say that a
continuous function preserves limits. Moreover, note that the limit

⊔
i∈N di is taken in

D, while the limit
⊔

i∈N f (di) is taken in E.

Remark 5.5. Let (D,v) be a CPO that has only finite chains. Then any chain {di}i∈N
in D is such that there are d ∈ D and k ∈ N such that ∀i ∈ N. di+k = d and it has a
limit (d) that is also an element of the chain. Thus any monotone function f : D→ E
is continuous, because ∀i ∈ N. f (di+k) = f (d) (i.e., the chain { f (di)}i∈N is finite
and its limit is f (d)).

Interestingly, continuous functions are closed under composition.

Theorem 5.5 (Continuity of composition). Let (D,vD), (E vE) and (F vF) be
three CPOs, and f : D→ E, g : E→ F be two continuous functions. Their composi-
tion

h def
= g◦ f : D→ F

defined by letting h(d) = g( f (d)) for all d ∈ D is continuous.

Proof. Let {di}i∈N be a chain in D. We want to prove that h(
⊔

i∈N di) =
⊔

i∈N h(di).
We have
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h(
⊔

i∈N di) = g( f (
⊔

i∈N di)) by definition of h = g◦ f
= g(

⊔
i∈N f (di)) by continuity of f

=
⊔

i∈N g( f (di)) by continuity of g
=
⊔

i∈N h(di) by definition of h = g◦ f
ut

Remark 5.6. The composition g◦ f is sometimes denoted also by f ;g.

Example 5.17 (A monotone function which is not continuous). Let (N∪{∞},≤) be
the CPO from Example 5.11. Define a function f : N∪{∞}→ N∪{∞} such that:

f (x) def
=

{
0 if x ∈ N
1 if x = ∞

It is immediate to check that f is monotone:

• for n,m ∈ N, if n≤ m we have f (n) = 0≤ 0 = f (m);
• for n ∈ N, we have n≤ ∞ and f (n) = 0≤ 1 = f (∞);
• for ∞≤ ∞ we have of course f (∞)≤ f (∞).

Let us consider the chain {di}i∈N of even numbers:

0≤ 2≤ 4≤ 6≤ . . .

whose limit is ∞. The chain { f (di)}i∈N is instead the constant chain

0≤ 0≤ 0≤ 0≤ . . .

whose limit is 0. So we have

f (
⊔
i∈N

di) = f (∞) = 1 6= 0 =
⊔
i∈N

f (di)

The monotone function f does not preserve the limits and thus it is not continuous.

5.2.2 Fixpoints

Now we are ready to study fixpoints of continuous functions.

Definition 5.15 (Pre-fixpoint and fixpoint). Let f be a continuous function on a
CPO⊥ (D,v). An element p is a pre-fixpoint if

f (p)v p.

An element d ∈ D is a fixpoint of f if

f (d) = d.
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Of course any fixpoint of f is also a pre-fixpoint of f , i.e., the set of fixpoints of f
is included in the set of its pre-fixpoints.

We will denote by gfp( f ) the greatest fixpoint of f and by lfp( f ) the least fixpoint
of f , when they exist.

Let f : D→ D and d ∈ D. We denote by f n(d) the repeated application of f to d
for n times, i.e.,

f 0(d) def
= d

f n+1(d) def
= f ( f n(d))

Lemma 5.2. Let (D,v) be a partial order and f : D→ D be a monotone function.
The elements { f n(⊥)}n∈N form a chain in D.

Proof. The property ∀n ∈ N. f n(⊥)v f n+1(⊥) can be readily proved by mathemat-
ical induction on n.

Base case: For n = 0 we have f 0(⊥) =⊥v f 1(⊥) = f (⊥), as ⊥ is the least
element of D.

Inductive case: Let us assume that the property holds for n, i.e., that

f n(⊥)v f n+1(⊥).

We want to prove that the property holds for n+1, i.e., that

f n+1(⊥)v f n+2(⊥).

In fact by definition we have f n+1(⊥) = f ( f n(⊥)) and f n+2(⊥) =
f ( f n+1(⊥)). Since f is monotone and by the inductive hypothesis
we have

f n+1(⊥) = f ( f n(⊥))v f ( f n+1(⊥)) = f n+2(⊥).
ut

When (D,v) is a CPO then the chain { f n(⊥)}n∈N must have a limit
⊔

n∈N f n(⊥).
The next theorem ensures that the least fixpoint of a continuous function always
exists and that it is computed by the above limit.

Theorem 5.6 (Kleene’s fixpoint theorem). Let f : D→D be a continuous function
on a CPO⊥ D. Then, let

fix( f ) =
⊔

n∈N
f n(⊥)

The element fix( f ) ∈ D has the following properties:

1. fix( f ) is a fixpoint of f , namely

f (fix( f )) = fix( f )
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2. fix( f ) is the least pre-fixpoint of f , namely

f (d)v d⇒ fix( f )v d

Since any fixpoint is a pre-fixpoint, fix( f ) is also the least fixpoint of f .

Proof. We prove the two items separately.

1. By continuity we will show that fix( f ) is a fixpoint of f :

f (fix( f )) = f (
⊔

n∈N
f n(⊥)) (by definition of fix)

=
⊔

n∈N
f ( f n(⊥)) (by continuity of f )

=
⊔

n∈N
f n+1(⊥) (by definition of f n+1)

So we need to compute the limit of the chain

f (⊥)v f 2(⊥)v f 3(⊥)v . . .

Since the limit is independent of any finite prefix of the chain, it coincides with
the limit of the chain

f 0(⊥) =⊥v f (⊥)v f 2(⊥)v f 3(⊥)v . . .

⊔
n∈N

f n+1(⊥) =
⊔

n∈N
f n(⊥) (by Lemma 5.1)

= fix( f ) (by definition of fix)

2. We want to prove that fix( f ) is the least pre-fixpoint. We prove that any pre-
fixpoint of f is an upper bound of the chain { f n(⊥)}n∈N. Let d be a pre-fixpoint
of f , i.e.,

f (d) v d (5.1)

By mathematical induction we show that

∀n ∈ N. f n(⊥)v d

i.e., that d is an upper bound for the chain { f n(⊥)}n∈N:

base case: obviously f 0(⊥) =⊥v d
inductive case: let us assume f n(⊥)v d. We want to prove that f n+1(⊥)v d:

f n+1(⊥) = f ( f n(⊥)) (by definition of f n+1)
v f (d) (by monotonicity of f

and inductive hypothesis)
v d (because d is a pre-fixpoint)
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Since d is an upper bound for { f n(⊥)}n∈N and fix( f ) is the limit (i.e., the least
upper bound) of the same chain, it must be that fix( f )v d.

ut

Now let us give two examples which show that the bottom element and the
continuity property are required to compute the least fixpoint.

Example 5.18 (Bottom is necessary). Let ({true, false},v) be the discrete order of
boolean values. Obviously it is complete (because only finite chains of the form
x v x v x v . . . exist) and it has no bottom element, as true and false are not
comparable. All functions over this domain are continuous. The identity function has
two fixpoints, but there is no least fixpoint. On the contrary, the negation function
has no fixpoint.

Example 5.19 (Continuity is necessary). Let us consider the CPO⊥ (N∪{∞1,∞2},v)
where

(v� N) =≤, ∀d ∈ N∪{∞1}. d v ∞1, ∀d ∈ N∪{∞1,∞2}. d v ∞2

The bottom element is 0. We define a monotone function f as follows (see Figure 5.5):

f (n) def
=

{
n+1 if n ∈ N
∞2 otherwise

Note that f is not continuous. Let us consider the chain of even numbers {di}i∈N. It
follows that { f (di)}i∈N is the chain of odd numbers. We have⊔

i∈N
di = ∞1

⊔
i∈N

f (di) = ∞1

Therefore:

f

(⊔
i∈N

di

)
= f (∞1) = ∞2 6= ∞1 =

⊔
i∈N

f (di)

Note that f has only one fixpoint, indeed

f (∞2) = ∞2

But this fixpoint is not reachable by taking
⊔

n∈N f n(0) = ∞1.

5.3 Immediate Consequence Operator

In this section we reconcile two different approaches for defining semantics: inference
rules, such as those used for defining the operational semantics of IMP, and fixpoint
theory, which will be applied to define the denotational semantics of IMP. We show
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Fig. 5.5: Continuity is necessary

that the set of theorems of a logical system R can be defined as the least fixpoint of a
suitable operator, called the immediate consequence operator and denoted R̂.

5.3.1 The Operator R̂

Let us consider a set F of well-formed formulas and a set R of inference rules over
them. We define an operator R̂ over (℘(F),⊆), the CPO⊥ of sets of well-formed
formulas ordered by inclusion.

Definition 5.16 (Immediate consequence operator R̂). Let R be a logical system.
We define a function R̂ :℘(F)→℘(F) as follows (for any S⊆ F):

R̂(S) def
= {y | ∃(X/y) ∈ R. X ⊆ S}

The function R̂ is called the immediate consequence operator.

The operator R̂, when applied to a set of well-formed formulas S, calculates a
new set of formulas by applying the inference rules of R to the facts in S in all
possible ways, i.e., R̂(S) is the set of conclusions we can derive in one step from the
hypotheses in S using rules in R. We will show that the set of theorems of R is equal
to the least fixpoint of the immediate consequence operator R̂.

To apply the fixpoint theorem, we need to prove that R̂ is monotone and continu-
ous.

Theorem 5.7 (Monotonicity of R̂). R̂ is a monotone function.

Proof. Let S1 ⊆ S2. We want to show that R̂(S1)⊆ R̂(S2). Let us assume y ∈ R̂(S1),
then there exists a rule (X/y)∈ R with X ⊆ S1. So we have X ⊆ S2 and y∈ R̂(S2). ut

Theorem 5.8 (Continuity of R̂ ). Let R be a logical system such that for any (X/y)∈
R the set of premises X is finite. Then R̂ is continuous.
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Proof. Let {Si}i∈N be a chain in ℘(F). We want to prove that⋃
i∈N

R̂(Si) = R̂(
⋃
i∈N

Si).

As usual we prove the two inclusions separately:

⊆) Let y ∈⋃i∈N R̂(Si) so there exists a natural number k such that y ∈ R̂(Sk). Since

Sk ⊆
⋃
i∈N

Si

by monotonicity

R̂(Sk)⊆ R̂

(⋃
i∈N

Si

)
hence y ∈ R̂(

⋃
i∈N Si).

⊇) Let y ∈ R̂(
⋃

i∈N Si) so there exists a rule X/y ∈ R with X ⊆⋃i∈N Si. Since X is
finite, there exists a natural number k such that X ⊆ Sk. In fact, for every x ∈ X
there will be a natural number kx with x ∈ Skx and letting k = max{kx}x∈X we
have X ⊆ Sk. Since X ⊆ Sk we have y ∈ R̂(Sk)⊆

⋃
i∈N R̂(Si) as required. ut

5.3.2 Fixpoint of R̂

Now we are ready to present the fixpoint of R̂. For this purpose let us define IR as the
set of theorems provable in R:

IR
def
=
⋃
i∈N

Ii
R

where

I0
R

def
= ∅

In+1
R

def
= R̂(In

R) ∪ In
R

Note that the generic In
R contains all theorems provable with derivations of depth1

at most n, and IR contains all theorems provable by using the rule system R.

Theorem 5.9. Let R be a rule system. Then

∀n ∈ N. In
R = R̂n(∅)

Proof. By induction on n.

1 See Problem 4.12.
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base case: I0
R = R̂0(∅) =∅.

inductive case: We assume In
R = R̂n(∅) and want to prove In+1

R = R̂n+1(∅). Then

In+1
R = R̂(In

R) ∪ In
R (by definition of In+1

R )
= R̂(R̂n(∅)) ∪ R̂n(∅) (by inductive hypothesis)
= R̂n+1(∅) ∪ R̂n(∅) (by definition of R̂n+1)
= R̂n+1(∅) (because R̂n+1(∅)⊇ R̂n(∅))

In the last step of the proof we have exploited the property R̂n+1(∅)⊇ R̂n(∅), which
is an instance of Lemma 5.2 (by taking D =℘(F), v=⊆, ⊥=∅ and f = R̂). ut

Theorem 5.10 (Fixpoint of R̂). Let R be a logical system. Then

fix(R̂) = IR

Proof. By continuity of R̂ (Theorem 5.8) and the fixpoint theorem (Theorem 5.6),
we know that the least fixpoint of R̂ exists and that

fix(R̂) def
=
⋃

n∈N
R̂n(∅)

Then, by Theorem 5.9:

IR
def
=
⋃

n∈N
In
R =

⋃
n∈N

R̂n(∅) def
= fix(R̂)

as required. ut

Example 5.20 (Rule system with discontinuous R̂). Let us consider the logical system
R below:

∅

P(1)

P(x)

P(x+1)

∀n ∈ N. P(1+2×n)

P(0)

To ensure the continuity of R̂, Theorem 5.8 requires that the system has only rules
with finitely many premises. The third rule of our system instead has infinitely many
premises; it corresponds to

P(1) P(3) P(5) · · ·
P(0)

The continuity of R̂, namely the fact that for all chains {Si}i∈N we have
⋃

i∈N R̂(Si) =

R̂(
⋃

i∈N Si), does not hold in this case. Indeed if we take the chain

{P(1)} ⊆ {P(1),P(3)} ⊆ {P(1),P(3),P(5)} . . .

we have
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i 0 1 2 · · ·
Si {P(1)} ⊆ {P(1),P(3)} ⊆ {P(1),P(3),P(5)} · · ·

R̂(Si) {P(1),P(2)} ⊆ {P(1),P(2),P(4)} ⊆ {P(1),P(2),P(4),P(6)} · · ·

from which we get ⋃
i∈N

Si = {P(1),P(3),P(5), . . .}

R̂(
⋃
i∈N

Si) = {P(1),P(2),P(4), . . . P(0)︸︷︷︸
3rd rule

}

⋃
i∈N

R̂(Si) = {P(1),P(2),P(4),P(6), . . .}

because the third rule applies only when the predicate P holds for all the odd numbers,
as in

⋃
i∈N Si. Let us now compute the limit of R̂:

fix(R̂) =
⋃

n∈N
R̂n(∅) = {P(1),P(2),P(3),P(4), . . .}

In fact, we have

R̂0(∅) = ∅
R̂1(∅) = {P(1)}
R̂2(∅) = {P(1),P(2)}
R̂3(∅) = {P(1),P(2),P(3)}

· · ·

But fix(R̂) is not a fixpoint of R̂, because P(0) 6∈ fix(R̂) but P(0) ∈ R̂(fix(R̂))!

R̂(fix(R̂)) = {P(0),P(1),P(2),P(3),P(4), . . .} 6= fix(R̂)

Example 5.21 (Balanced parentheses). Let us consider the grammar for balanced
parentheses, from Example 2.5:

S ::= ε | (S) | SS

The corresponding logical system is:

∅

ε ∈ LS

s ∈ LS

(s) ∈ LS

s1 ∈ LS s2 ∈ LS

s1s2 ∈ LS

So we can use the R̂ operator and the fixpoint theorem to find all the strings generated
by the grammar by letting LS = fix(R̂):
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LS0 = R̂0(∅) =∅
LS1 = R̂(S0) = {ε}
LS2 = R̂(S1) = {ε, ( )}
LS3 = R̂(S2) = {ε, ( ), (( )), ( )( )}
. . .

Problems

5.1. Prove Theorem 5.1. Hint: The proof is easy, because the axioms of partial and
total orders are all universally quantified.

5.2. Let (℘(N),⊆) be the CPO⊥ of sets of natural numbers, ordered by inclusion.
Assume a set X ⊆ N is fixed. Let f ,g :℘(N)−→℘(N) be the functions

f (S) def
= S∩X

g(S) def
= (N\S)∩X

1. Are f and g monotone? Are they continuous?
2. Do the answers to the above questions depend on the given set X?

5.3. Define three functions fi : Di→Di over three suitable CPOs Di for i ∈ [1,3] (not
necessarily with bottom) such that

1. f1 is continuous, has fixpoints but not a least fixpoint;
2. f2 is continuous and has no fixpoint;
3. f3 is monotone but not continuous.

5.4. Define a partial order D = (D,v) that is not complete.

1. Let x≺ y be the irreflexive relation obtained by reversing the order, i.e.

x≺ y if and only if yv x∧ x 6= y.

Is D ′ = (D,≺) a well-founded relation?
2. In general, is it possible that D ′ is well-founded for some D?

5.5. Let V ∗∪V ∞ be the set of finite (V ∗) and infinite (V ∞) strings over the alphabet
V = {a,b,c}, and let α v αβ , where juxtaposition in αβ denotes string concatena-
tion and αβ = α if α is infinite.

1. Is the structure (V ∗∪V ∞,v) a partial order?
2. If yes, is it a complete partial order?
3. Does there exist a bottom element?
4. Which are the maximal elements?
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5.6. Let (D1,v1) and (D2,v2) be two CPOs such that D1,D2 ⊆ D. Consider the
structures

• (D1∪D2 , v), where xv y iff xv1 y∨ xv2 y
• (D1∩D2 , �), where x� y iff xv1 y∧ xv2 y

1. Are they always partial orders?
2. If so, are they complete?

In the case of negative answers, exhibit some counterexample.

5.7. Let X and Y be sets and X⊥ and Y⊥ be the corresponding flat domains. Show
that a function f : X⊥→Y⊥ is continuous if and only if one, or both, of the following
conditions holds:

1. f is strict, i.e., f (⊥) =⊥.
2. f is constant.

5.8. Let {>} be a one-element set and {>}⊥ the corresponding flat domain. Let Ω

be the domain of vertical natural numbers (see Examples 5.6 and 5.11)

0≤ 1≤ 2≤ 3≤ ...≤ ∞.

Show that the set of continuous functions from Ω to {>}⊥ is in bijection with Ω .
Hint: Define the possible continuous functions from Ω to {>}⊥.

5.9. Let D = {n ∈ N | n > 0}∪{∞0} and v be the relation over D such that

• for any pair of natural numbers n,m ∈ D, we let nv m iff n divides m;
• for any x ∈ D, we let xv ∞0.

Is (D,v) a CPO⊥? Explain.

5.10. Consider the set N×N of pairs of natural numbers with the lexicographic order
relation v defined by letting

(n,m)v (n′,m′) if n < n′∨ (n = n′∧m < m′)

1. Prove that v is a partial order with bottom.
2. Show that the chain {(0,k)}k∈N has a lub.
3. Exhibit a chain without lub.
4. Consider the subset [0,n]×N, with the same order, and then show, also in this

case, a chain without lub .
5. Finally, prove that [0,n]× (N∪{∞}) with the same order (where x≤ ∞ for any

x ∈ N), is complete with bottom, and show a monotone, non-continuous function
on it.

5.11. Prove that the set Tf of total functions from N to N⊥ defined in Example 5.14
forms a complete partial order.
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5.12. Consider the set PI of partial injective functions fromN toN. A partial injective
function f can be seen as a relation {(x,y) | x,y ∈ N∧ y = f (x)} ⊆ N×N such that

• (x,y),(x,y′) ∈ f implies y = y′, (i.e., f is a partial function), and
• (x,y),(x′,y) ∈ f implies x = x′, (i.e., f is injective).

Accordingly, the elements of PI can be ordered by inclusion.

1. Prove that (PI,⊆) is a complete partial order.
2. Prove that the function F : PI→ PI with F( f ) = {(2× x,y) | (x,y) ∈ f} is

monotone and continuous.
(Hint: Consider F as computed by the immediate consequences operator R̂, with
R consisting only of the rule (x,y)/(2× x,y).)

5.13. Let (D,v) be a CPO, {di}i∈N a chain in D and f : N→ N a function such that
for all i, j ∈ N if i < j then f (i)< f ( j). Prove that⊔

i∈N
d f (i) =

⊔
i∈N

di

5.14. Let D,E be two CPO⊥s and f : D→ E, g : E→D be two continuous functions
between them. Their compositions h = g ◦ f : D→ D and k = f ◦ g : E → E are
known to be continuous and thus have least fixpoints.

D
f

++h=g◦ f 99 E
g

kk k= f◦g
yy

Let e0 = fix(k) ∈ E. Prove that g(e0) = fix(h) ∈ D by showing that

1. g(e0) is a fixpoint for h, and
2. g(e0) is the least pre-fixpoint for h.



Chapter 6
Denotational Semantics of IMP

The point is that, mathematically speaking, functions are
independent of their means of computation and hence are

“simpler” than the explicitly generated, step-by-step evolved
sequences of operations on representations. (Dana Scott)

Abstract In this chapter we give a more abstract, purely mathematical semantics
to IMP, called denotational semantics. The operational semantics is close to the
memory-based, executable machine-like view: given a program and a state, we derive
the state obtained after the execution of that program. The denotational semantics
takes a program and returns the transformation function over memories associated
with that program: given an initial state as the argument, the final state is returned as
the result. Since functions will be written in some fixed mathematical notation, i.e.,
they can also be regarded as “programs” of a suitable formalism, we can say that,
to some extent, the operational semantics defines an “interpreter” of the language
(given a program and the initial state it returns the final state obtained by executing
the program), while the denotational semantics defines a “compiler” for the language
(from programs to functions, i.e., programs written in a more abstract language). We
conclude the chapter by reconciling the equivalences induced by the operational and
the denotational semantics and by stating the principle of computational induction.

6.1 λ -Notation

In the following we shall rely on λ -notation as a (meta-)language for writing anony-
mous functions. When considering HOFL, λ -notation will be used both at the level
of the programming language and at the level of the denotational semantics, as a
meta-language.

The λ -calculus was introduced by Alonzo Church (1903–1995) in order to answer
one of the questions posed by David Hilbert (1862–1943) in his program, known as
the Entscheidungsproblem (German for decision problem). Roughly, the problem
consisted in the existence of an algorithm to decide whether a given statement of a
first-order logic (possibly enriched with a finite number of axioms) is deducible or
not from the axioms of logic. Alan Turing (1912–1954) proved that no effectively
calculable algorithm can exist that solves the problem, where “calculable” meant

© Springer International Publishing Switzerland 2017
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128 6 Denotational Semantics of IMP

computable by a Turing machine. Independently, Alonzo Church answered negatively
assuming that “calculable” meant a function expressible in the λ -calculus.

6.1.1 λ -Notation: Main Ideas

The λ -calculus is built around the idea of expressing a calculus of functions, where it
is not necessary to assign names to functions, i.e., where functions can be expressed
anonymously. Conceptually, this amounts to the possibility of

• forming (anonymous) functions by abstraction over names in an expression; and
• applying a function to an argument.

Building on the two basic considerations above, Church developed a theory of
functions based on rules for computation, as opposed to the classical set-theoretic
view of functions as sets of pairs (argument, result).

Example 6.1. Let us start with a simple example from arithmetic. Take a polynomial
such as

x2−2x+5

What is the value of the above expression when x is replaced by 2? We compute the
result by plugging in ‘2’ for ‘x’ in the expression to get

22−2×2+5 = 5

In λ -notation, when we want to express that the value of an expression depends
on some value to be plugged in, we use abstraction. Syntactically, this corresponds
to prefixing the expression by the special symbol λ and the name of the formal
parameter, as, e.g., in

λx. (x2−2x+5)

The informal reading is

wait for a value v to replace x and then compute v2−2v+5.

We want to be able to pass some actual parameter to the function above, i.e., to ap-
ply the function to some value v. To this aim, we denote application by juxtaposition:

(λx. (x2−2x+5)) 2

means that the function (λx. (x2 − 2x + 5)) is applied to 2 (i.e., that the actual
parameter 2 must replace the occurrences of the formal parameter x in x2−2x+5,
to obtain 22−2×2+5 = 5).

Note that

• by writing λx. t we are declaring x as a formal parameter appearing in t;
• the symbol λ has no particular meaning (any other symbol could have been used);
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• we say that λx ‘binds’ the (occurrences of the) variable x in t;
• the scope of the formal parameter x is just t; if x occurs also “outside” t, then it

refers to another (homonymous) identifier.

Example 6.2. Let us consider another example:

(λx. λy. (x2−2y+5)) 2

This time we have a function that is waiting for two arguments (first x, then y), but to
which we pass one value (2). We have

(λx. λy. (x2−2y+5)) 2 = λy. (22−2y+5) = λy. (9−2y)

That is, the result of applying λx. λy. (x2−2y+5) to 2 is the function (λy. (9−2y)).

In the λ -calculus we can pass functions as arguments and return functions as
results.

Example 6.3. Take the term λ f . ( f 2): it waits for a function f that will be applied
to the value 2. If we pass the function (λx. λy. (x2−2y+5)) to λ f . ( f 2), written

(λ f . ( f 2)) (λx. λy. (x2−2y+5))

then we get the function λy. (9−2y) as a result.

Definition 6.1 (Lambda terms). We define lambda terms as the terms generated by
the grammar

t ::= x | λx. t | (t0 t1) | t→ (t0, t1)

where x is a variable.

As we can see the lambda notation is very simple. It has four constructs:

• x: is a simple variable.
• λx. t: is the lambda abstraction which allows us to define anonymous functions.
• t0 t1: is the application of a function t0 to its argument t1.
• t → t0, t1 is the conditional operator, i.e. the “if-then-else” construct in lambda

notation.

Note that we omit some parentheses when no ambiguity can arise.
Lambda abstraction λx. t is the main feature. It allows us to define functions,

where x represents the parameter of the function and t is the lambda term which
represents the body of the function. For example the term λx. x is the identity
function.

Note that while we can have different terms t and t ′ that define the same function,
Church proved that the problem of deciding whether t = t ′ is undecidable.
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Definition 6.2 (Conditional expressions). Let t, t0 and t1 be three lambda terms. We
define

t→ t0, t1 =
{

t0 if t = true
t1 if t = f alse

All the notions used in this definition, such as “true” and “false”, can be formalised
in lambda notation only, by using lambda abstraction, as shown in Section 6.1.1.1
for the interested reader. In the following we will take the liberty of assuming that
data types such as integers and booleans are available in the lambda-notation as well
as the usual operations on them.

Remark 6.1 (Associativity of abstraction and application). In the following, to limit
the number of parentheses and keep the notation more readable, we assume that
application is left-associative, and lambda abstraction is right-associative, i.e.,

t1 t2 t3 t4 is read as (((t1 t2) t3) t4)
λx1. λx2. λx3. λx4. t is read as λx1. (λx2. (λx3. (λx4. t)))

Remark 6.2 (Precedence of application). We will also assume that application has
precedence over abstraction, i.e.,

λx. t t ′ = λx. (t t ′)

6.1.1.1 λ -Notation: Booleans and Church Numerals

In the above examples, we have enriched standard arithmetic expressions with
abstraction and application. In general, it would be possible to encode booleans and
numbers (and operations over them) just using abstraction and application.

For example, let us consider the following terms:

T def
= λx. λy. x

F def
= λx. λy. y

We can assume that T represents true and F represents false.
Under this convention, we can define the usual logical operations by letting

AND def
= λ p. λq. p q p

OR def
= λ p. λq. p p q

NOT def
= λ p. λx. λy. p y x

Now suppose that P will reduce either to T or to F . The expression P A B can be
read as ‘if P then A else B’.
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For natural numbers, we can adopt the convention that the number n is represented
by a function that takes a function f and an argument x and applies f to x for n times
consecutively. For example

0 def
= λ f . λx. x 1 def

= λ f . λx. f x 2 def
= λ f . λx. f ( f x) · · ·

Then, the operations for successor, sum and multiplication can be defined by
letting

SUCC def
= λn. λ f . λx. f (n f x)

SUM def
= λn. λm. λ f . λx. m f (n f x)

MUL def
= λn. λm. λ f . n (m f )

6.1.2 Alpha-Conversion, Beta-Rule and Capture-Avoiding
Substitution

The names of the formal parameters we choose for a given function should not matter.
Therefore, any two expressions that differ just in the particular choice of λ -abstracted
variables and have the same structure otherwise should be considered be equal.

For example, we do not want to distinguish between the terms

λx. (x2−2x+5) λy. (y2−2y+5)

On the other hand, the expressions

x2−2x+5 y2−2y+5

must be distinguished, because depending on the context where they are used, the
symbols x and y could have different meanings.

We say that two terms are α-convertible if one is obtained from the other by
renaming some λ -abstracted variables. We call free the variables x whose occurrences
are not inside the scope of a λ binding.

Definition 6.3 (Free variables). The set of free variables occurring in a term is
defined by structural recursion:

fv(x) def
= {x}

fv(λx. t) def
= fv(t)\{x}

fv(t0 t1)
def
= fv(t0)∪ fv(t1)

fv(t→ t0, t1)
def
= fv(t)∪ fv(t0)∪ fv(t1)
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The second equation highlights that lambda abstraction is a binding operator.

Definition 6.4 (Alpha-conversion). We define α-conversion as the equivalence in-
duced by letting

λx. t = λy. (t[y/x]) if y 6∈ fv(t)

where t[y/x] denotes the substitution of x with y applied to the term t.

Note the side condition y 6∈ fv(t), which is needed to avoid ‘capturing’ other free
variables appearing in t.

For example

λ z. z2−2y+5 = λx. x2−2y+5 6= λy. y2−2y+5

We now have all the ingredients to define the basic computational rule, called the
β -rule, which explains how to apply a function to an argument.

Definition 6.5 (Beta-rule). Let t, t ′ be two lambda terms. We define

(λx. t ′) t = t ′[t/x]

This axiom is called the β -rule.

In defining alpha-conversion and the beta-rule we have used substitutions such
as [y/x] and [t/x]. Let us now try to formalise the notion of substitution by structural
recursion. What is wrong with the following naive attempt?

y[t/x]
def
=

{
t if y = x
y if y 6= x

(λy. t ′)[t/x]
def
=

{
λy. t ′ if y = x
λy. (t ′[t/x]) if y 6= x

(t0 t1)[t/x]
def
= (t0[t/x]) (t1[t/x])

(t ′→ t0, t1)[t/x]
def
= (t ′[t/x])→ (t0[t/x]),(t1[t/x])

Example 6.4 (Substitution, without alpha-renaming). Consider the terms

t def
= λx. λy. (x2−2y+5) t ′ def

= y

and apply t to t ′:

t t ′ = (λx. λy. (x2−2y+5)) y

= (λy. (x2−2y+5))[y/x]

= λy. ((x2−2y+5)[y/x])

= λy. (y2−2y+5)
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It happens that the free variable y ∈ fv(t t ′) has been ‘captured’ by the lambda
abstraction λy. Instead, free variables occurring in t should remain free during the
application of the substitution [t/x].

Thus we need to correct the above version of substitution for the case related
to (λy. t ′)[t/x] by first applying the alpha-conversion to λy. t ′ (to make sure that
if y ∈ fv(t), then the free occurrences of y in t will not be captured by λy when
replacing x in t ′) and then the substitution [t/x].

Definition 6.6 (Capture-avoiding substitution). Let t, t ′, t0 and t1 be four lambda
terms. We define

y[t/x]
def
=

{
t if y = x
y if y 6= x

(λy. t ′)[t/x]
def
= λ z. ((t ′[z/y])[

t/x]) if z 6∈ fv(λy. t ′)∪ fv(t)∪{x}
(t0 t1)[t/x]

def
= (t0[t/x]) (t1[t/x])

(t ′→ t0, t1)[t/x]
def
= (t ′[t/x])→ (t0[t/x]),(t1[t/x])

Note that the matter of names is not so trivial. In the second equation we first
rename y in t ′ with a fresh name z, then proceed with the substitution of x with t.
As explained, this solution is motivated by the fact that y might not be free in t,
but it introduces some nondeterminism in the equations due to the arbitrary nature
of the new name z. This nondeterminism immediately disappears if we regard the
terms up to the alpha-conversion equivalence, as previously introduced. Obviously
α-conversion and substitution should be defined at the same time to avoid circularity.
By using the α-conversion we can prove statements such as λx. x = λy. y.

Example 6.5 (Application with alpha-renaming). Consider the terms t, t ′ from Exam-
ple 6.4. By exploiting Definition 6.6, we have

t t ′ = (λx. λy. (x2−2y+5)) y

= (λy. (x2−2y+5))[y/x]

= λ z. ((x2−2y+5)[z/y][
y/x])

= λ z. ((x2−2z+5)[y/x])

= λ z. (y2−2z+5)

Finally we introduce some notational conventions for omitting parentheses when
defining the domains and codomains of functions:

A→ B×C = A→ (B×C) A×B×C = (A×B)×C
A×B→C = (A×B)→C A→ B→C = A→ (B→C)
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6.2 Denotational Semantics of IMP

As we said, we will use lambda notation as a meta-language; this means that we will
express the semantics of IMP by translating IMP syntax into lambda terms.

The denotational semantics of IMP consists of three separate interpretation func-
tions, one for each syntax category (Aexp,Bexp,Com):

Aexp: each arithmetic expression is mapped to a function from states to integers:

A : Aexp→ (Σ → Z)

Bexp: each boolean expression is mapped to a function from states to booleans:

B : Bexp→ (Σ → B)

Com: each command is mapped to a (partial) function from states to states:

C : Com→ (Σ ⇀ Σ)

6.2.1 Denotational Semantics of Arithmetic Expressions: The
Function A

We shall define A by structural recursion over the syntax of arithmetic expressions.
Let us fix some notation. We will rely on definitions of the form

A JnK def
= λσ . n

with the following meaning:

• A : Aexp→ Σ → Z is the interpretation function,
• n is an arithmetic expression (i.e., a term in Aexp). The surrounding brackets J

and K emphasise that it is a piece of syntax rather then part of the meta-language.
• the expression A JnK is a function whose type is Σ → Z. Notice that also the right

part of the equation must be of the same type Σ → Z.

We shall often define the interpretation function A by writing equalities such as

A JnKσ
def
= n

instead of

A JnK def
= λσ . n

In this way, we simplify the notation in the right-hand side. Notice that both sides of
the equation (A JnKσ and n) have type Z.



6.2 Denotational Semantics of IMP 135

Definition 6.7 (Denotational semantics of arithmetic expressions). The denota-
tional semantics of arithmetic expressions is defined by structural recursion as

A JnKσ
def
= n

A JxKσ
def
= σx

A Ja0 +a1Kσ
def
= (A Ja0Kσ)+(A Ja1Kσ)

A Ja0−a1Kσ
def
= (A Ja0Kσ)− (A Ja1Kσ)

A Ja0×a1Kσ
def
= (A Ja0Kσ)× (A Ja1Kσ)

Let us briefly comment on the above definitions.

Constants: The denotational semantics of any constant n is just the con-
stant function that always returns n for any σ .

Variables: The denotational semantics of any variable x is the function
that takes a memory σ and returns the value of x in σ .

Binary expressions: The denotational semantics of any binary expression evaluates
the arguments (with the same given σ ) and combines the
results by exploiting the corresponding arithmetic operation.

Note that the symbols +,− and× are overloaded: in the left-hand side they represent
elements of the syntax, while in the right-hand side they represent operators of the
meta-language. Similarly for the symbol n in the first equation.

6.2.2 Denotational Semantics of Boolean Expressions: The
Function B

The denotational semantics of boolean expressions is given by a function B defined
in a very similar way to A . The only differences are that the values to be returned
are elements of B and not of Z and that B is not always defined in terms of itself:
some defining equations exploit the function A .

Definition 6.8 (Denotational semantics of boolean expressions). The denotational
semantics of boolean expressions is defined by structural recursion as follows:

B JvKσ
def
= v

B Ja0 = a1Kσ
def
= (A Ja0Kσ) = (A Ja1Kσ)

B Ja0 ≤ a1Kσ
def
= (A Ja0Kσ)≤ (A Ja1Kσ)

B J¬bKσ
def
= ¬ (B JbKσ)

B Jb0∨b1Kσ
def
= (B Jb0Kσ)∨ (B Jb1Kσ)

B Jb0∧b1Kσ
def
= (B Jb0Kσ)∧ (B Jb1Kσ)
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6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com→ (Σ ⇀ Σ)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define

C : Com→ (Σ → Σ⊥)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

discussing its defining equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKσ
def
= σ (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKσ
def
= σ [A JaKσ/x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory by assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
Σ⊥, not necessarily in Σ , so we cannot apply C Jc1K. To work this problem out we
introduce a lifting operator (·)∗: it takes a function in Σ → Σ⊥ and returns a function
in Σ⊥→ Σ⊥, i.e., its type is (Σ → Σ⊥)→ (Σ⊥→ Σ⊥).

Definition 6.9 (Lifting). Let f : Σ → Σ⊥. We define a function f ∗ : Σ⊥ → Σ⊥ as
follows:

f ∗(x) =
{
⊥ if x =⊥
f (x) otherwise

So the definition of the interpretation function for c0;c1 is

C Jc0;c1Kσ
def
= C Jc1K∗ (C Jc0Kσ) (6.3)

Note that we apply the lifted version C Jc1K∗ of C Jc1K to the argument C Jc0Kσ .
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Let us now consider the conditional command. Recall that the λ -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Kσ
def
= B JbKσ → C Jc0Kσ ,C Jc1Kσ (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKσ
def
= B JbKσ → C Jwhile b do cK∗ (C JcKσ) ,σ

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Γb,c : (Σ → Σ⊥)→ Σ → Σ⊥:

Γb,c
def
= λϕ. λσ . B JbKσ → ϕ

∗(C JcKσ),σ

Σ⊥

Σ→Σ⊥

(Σ→Σ⊥)→Σ→Σ⊥

The function Γb,c takes a function ϕ : Σ → Σ⊥, and returns the function

λσ . B JbKσ → ϕ
∗(C JcKσ),σ

of type Σ → Σ⊥, which given a memory σ evaluates B JbKσ and depending on the
outcome returns either ϕ∗(C JcKσ) or σ . Note that the definition of Γb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Γb,c, i.e., that

C Jwhile b do cK = Γb,c C Jwhile b do cK

As there can be several fixpoints for Γb,c, we define C Jwhile b do cK to be the
least one. Next we show that Γb,c is a monotone and continuous function, so that we
can prove that Γb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Γb,c =

⊔
n∈N

Γ
n

b,c(⊥Σ→Σ⊥) (6.5)

To prove continuity we will consider Γb,c as operating on partial functions:

Γb,c : (Σ ⇀ Σ)−→ (Σ ⇀ Σ).
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Partial functions in Σ ⇀ Σ can be represented as sets of pairs (σ ,σ ′) that we write
as formulas σ 7→ σ ′. Then the effect of Γb,c can be represented by the immediate
consequence operators for the following set of rules:

RΓb,c
def
=

{
B JbKσ C JcKσ = σ

′′
σ
′′ 7→ σ

′

σ 7→ σ
′

,
¬B JbKσ

σ 7→ σ

}
Note that there are infinitely many instances of the rules, but each rule has only a
finite number of premises, and that

R̂Γb,c = Γb,c.

The only formulas appearing in the rules are σ ′′ 7→ σ ′ (as a premise of the first rule),
σ 7→ σ ′ and σ 7→ σ (as conclusions); the other formulas express side conditions:
B JbKσ ∧ C JcKσ = σ ′′ for the first rule and ¬B JbKσ for the second rule. An
instance of the first rule schema is obtained by picking two memories σ and σ ′′

such that B JbKσ is true and C JcKσ = σ ′′. Then for every σ ′ such that σ ′′ 7→ σ ′

we can derive σ 7→ σ ′. The second rule schema is an axiom expressing that σ 7→ σ

whenever ¬B JbKσ .
Since all the rules obtained in this way have a finite number of premises (actually

one or none), we can apply Theorem 5.8, which ensures the continuity of R̂Γb,c . Now
by using Theorem 5.10 we have

fix Γb,c = fix R̂Γb,c = IRΓb,c

Let us conclude this section with three examples which explain how to use the
definitions we have given.

Example 6.6. Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We have C JwK def
= fix Γtrue,skip where

Γtrue,skipϕσ = B JtrueKσ → ϕ
∗ (C JskipKσ) ,σ

= true→ ϕ
∗ (C JskipKσ) ,σ

= ϕ
∗ (C JskipKσ)

= ϕ
∗
σ

= ϕσ

So we have Γtrue,skipϕ = ϕ , that is Γtrue,skip is the identity function. Then each
function ϕ is a fixpoint of Γtrue,skip, but we are looking for the least fixpoint. This
means that the sought solution is the least function in the CPO⊥ of functions Σ → Σ⊥.
Then we have

fix Γtrue,skip = λσ . ⊥Σ⊥
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In the following we will often write just Γ when the subscripts b and c are obvious
from the context.

Example 6.7. Let us consider the commands

w def
= while b do c

c′ def
= if b then (c ; w) else skip

Now we show the denotational equivalence between w and c′ for any b and c.
Since C JwK is a fixpoint we have

C JwK = Γ (C JwK) = λσ . B JbKσ → C JwK∗ (C JcKσ),σ

For c′ we have

C Jif b then (c;w) else skipK = λσ . B JbKσ → C Jc;wKσ ,C JskipKσ

= λσ . B JbKσ → C JwK∗ (C JcKσ),σ

Hence C JwK = C Jc′K.

Example 6.8. Let us consider the command

c def
= while x 6= 0 do x := x−1

we have C JcK def
= fix Γ where1

Γ ϕ
def
= λσ . B Jx 6= 0Kσ → ϕ

∗(C Jx := x−1Kσ),σ

= λσ . σx 6= 0→ ϕ
∗ (

σ [σx−1/x]
)
,σ

= λσ . σx 6= 0→ ϕ
(
σ [σx−1/x]

)
,σ

Let us compute an approximation of the fixpoint:

ϕ0 = Γ
0 ⊥Σ→Σ⊥ =⊥Σ→Σ⊥ = λσ . ⊥Σ⊥

ϕ1 = Γ ϕ0

= λσ . σx 6= 0→⊥Σ→Σ⊥︸ ︷︷ ︸
ϕ0

(
σ [σx−1/x]

)
,σ

= λσ . σx 6= 0→⊥Σ⊥ ,σ

ϕ2 = Γ ϕ1

= λσ . σx 6= 0→ (λσ
′. σ

′x 6= 0→⊥Σ⊥ ,σ
′︸ ︷︷ ︸

ϕ1

)
(
σ [σx−1/x]

)
,σ

Now we have the following possibilities for computing ϕ2σ :

1 Note that in the last step we can remove the lifting operation from ϕ∗ because σ [σx−1/x] 6=⊥.
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σx < 0) Then σx 6= 0 and σ [σx−1/x]x 6= 0 and thus ϕ2σ =⊥Σ⊥ .
σx = 0) Then σx 6= 0 is false and thus ϕ2σ = σ = σ [0/x].
σx = 1) Then σx 6= 0 and σ [σx−1/x]x = 0 and thus ϕ2σ = σ [σx−1/x] = σ [0/x].
σx > 1) Then σx 6= 0 and σ [σx−1/x]x 6= 0 and thus ϕ2σ =⊥Σ⊥ .

Summarising,

σx < 0

ϕ2σ =⊥
σx = 0

ϕ2σ = σ [0/x]

σx = 1

ϕ2σ = σ [0/x]

σx > 1

ϕ2σ =⊥

So we have
ϕ2 = λσ . σx < 0→⊥ , (σx < 2→ σ [0/x],⊥)

We can conjecture that ∀n ∈ N. P(n), where

P(n) def
= ( ϕn = λσ . 0≤ σx < n→ σ [0/x] , ⊥)

We are now ready to prove our conjecture by mathematical induction on n.

Base case: The base case is trivial, indeed we know ϕ0 = λσ . ⊥ and

λσ . 0≤ σx < 0→ σ [0/x] , ⊥ = λσ . false → σ [0/x],⊥)
= λσ . ⊥

Inductive case: For the inductive case, let us assume

P(n) def
= ( ϕn = λσ . 0≤ σx < n→ σ [0/x] , ⊥).

We want to prove

P(n+1) def
= ( ϕn+1 = λσ . 0≤ σx < n+1→ σ [0/x] , ⊥)

By definition

ϕn+1 = Γ ϕn = λσ . σx 6= 0→ ϕn(σ [σx−1/x]),σ

Let σ ′ def
= σ [σx−1/x]. By the inductive hypothesis, we have

ϕn(σ
′) = 0≤ σ

′x < n→ σ
′[0/x] , ⊥

= 0≤ σx−1 < n→ σ [0/x] , ⊥
= 1≤ σx < n+1→ σ [0/x] , ⊥

Thus

ϕn+1σ = σx 6= 0→ (1≤ σx < n+1→ σ [0/x] , ⊥) , σ

Now we have the following possibilities for computing ϕn+1σ :
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σx < 0) Then σx 6= 0 and σx< 1 are true, thus ϕn+1σ =
⊥.

σx = 0) Then σx 6= 0 is false and thus ϕn+1σ = σ =
σ [0/x].

1≤ σx < n+1) Then σx 6= 0 and 1≤ σx < n+1 are true, thus
ϕn+1σ = σ [0/x].

σx≥ n+1) Then σx 6= 0 is true, but 1≤σx< n+1 is false,
thus ϕn+1σ =⊥.

Summarising,

σx < 0

ϕn+1σ =⊥
σx = 0

ϕn+1σ = σ [0/x]

1≤ σx < n+1

ϕn+1σ = σ [0/x]

σx≥ n+1

ϕn+1σ =⊥

Then
ϕn+1 = λσ . 0≤ σx < n+1→ σ [0/x] , ⊥

which proves P(n+1).

Finally we have

C JcK = fix Γ =
⊔

n∈N
Γ

n⊥=
⊔

n∈N
ϕn = λσ . 0≤ σx→ σ [0/x] , ⊥

6.3 Equivalence Between Operational and Denotational
Semantics

This section deals with the issue of equivalence between the two semantics of IMP
introduced up to now. As we will show, the denotational and operational semantics
agree. As usual we will handle first arithmetic and boolean expressions, then as-
suming the proved equivalences we will show that the operational and denotational
semantics agree also on commands.

6.3.1 Equivalence Proofs for Expressions

We start by considering arithmetic expressions. We want to prove that the operational
and denotational semantics coincide, that is, the results of evaluating an arithmetic
expression both by operational and denotational semantics are the same. If we
regard the operational semantics as an interpreter and the denotational semantics
as a compiler we are proving that interpreting an IMP program and executing its
compiled version starting from the same memory leads to the same result.

Theorem 6.1. For all arithmetic expressions a ∈ Aexp, the predicate P(a) holds,
where
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P(a) def
= ∀σ ∈ Σ . 〈a,σ〉 →A JaKσ

Proof. The proof is by structural induction on arithmetic expressions.

Const: P(n) def
= ∀σ . 〈n,σ〉 →A JnKσ holds because, given a generic σ , we have

〈n,σ〉 → n and A JnKσ = n.

Vars: P(x) def
= ∀σ . 〈x,σ〉 →A JxKσ holds because, given a generic σ , we have

〈x,σ〉 → σx and A JxKσ = σx.
Ops: Let us generalise the proof for the binary operations of arithmetic expres-

sions. Consider two arithmetic expressions a0 and a1 and a binary operator
� ∈ {+,−,×} of IMP, whose corresponding semantic operator is ·. We
assume

P(a0)
def
= 〈a0,σ〉 →A Ja0Kσ

P(a1)
def
= 〈a1,σ〉 →A Ja1Kσ

and we want to prove

P(a0�a1)
def
= 〈a0�a1,σ〉 →A Ja0�a1Kσ

By using the inductive hypothesis we derive

〈a0�a1,σ〉 →A Ja0Kσ ·A Ja1Kσ

Finally, by definition of A

A Ja0Kσ ·A Ja1Kσ = A Ja0�a1Kσ

ut

The case of boolean expressions is completely similar to that of arithmetic expres-
sions, so we leave the proof as an exercise (see Problem 6.2).

Theorem 6.2. For all boolean expressions b∈ Bexp, the predicate P(b) holds, where

P(b) def
= ∀σ ∈ Σ . 〈b,σ〉 →B JbKσ

From now on we will assume the equivalence between denotational and opera-
tional semantics for boolean and arithmetic expressions.

6.3.2 Equivalence Proof for Commands

Central to the proof of equivalence between denotational and operational semantics
is the case of commands. Operational and denotational semantics are defined in
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very different formalisms: on the one hand we have an inference rule system which
allows us to calculate the execution of each command; on the other hand we have a
function which associates with each command its functional meaning. So to show
the equivalence between the two semantics we will prove the following property.

Theorem 6.3. ∀c ∈Com. ∀σ ,σ ′ ∈ Σ . 〈c,σ〉 → σ ′ ⇔ C JcKσ = σ ′.

As usual we divide the proof into two parts:

Correctness: ∀c ∈Com, ∀σ ,σ ′ ∈ Σ we prove

P(〈c,σ〉 → σ
′) def
= C JcKσ = σ

′

Completeness: ∀c ∈Com we prove

P(c) def
= ∀σ ,σ ′ ∈ Σ . C JcKσ = σ

′ ⇒ 〈c,σ〉 → σ
′

Notice that in this way the undefined cases are also handled for the equivalence: for
instance we have as a corollary that

〈c,σ〉 6→ ⇒ C JcKσ =⊥Σ⊥

since otherwise, assuming C JcKσ = σ ′ for some σ ′ ∈ Σ , it would follow that
〈c,σ〉 → σ ′. Similarly in the opposite direction:

C JcKσ =⊥Σ⊥ ⇒ 〈c,σ〉 6→

6.3.2.1 Correctness

Let us prove the first part of Theorem 6.3. We let

P
(
〈c,σ〉 → σ

′) def
= C JcKσ = σ

′

and prove that P(〈c,σ〉 → σ ′) holds for any c ∈Com and σ ,σ ′ ∈ Σ .
We proceed by rule induction. So for each rule we will assume the property holds

for the premises and we will prove that the property holds for the conclusion.

skip: Let us consider the operational rule for the skip:

〈skip,σ〉 → σ

We want to prove

P(〈skip,σ〉 → σ)
def
= C JskipKσ = σ

Obviously the proposition is true by the definition of the denotational
semantics.



144 6 Denotational Semantics of IMP

assign: Let us consider the rule for the assignment command:

〈a,σ〉 → m

〈x := a,σ〉 → σ [m/x]

We assume 〈a,σ〉 → m and hence A JaKσ = m by the equivalence of the
operational and denotational semantics of arithmetic expressions.
We want to prove

P(〈x := a,σ〉 → σ [m/x])
def
= C Jx := aKσ = σ [m/x]

By the definition of the denotational semantics

C Jx := aKσ = σ [A JaKσ/x] = σ [m/x]

seq: Let us consider the concatenation rule:

〈c0,σ〉 → σ
′′ 〈

c1,σ
′′〉→ σ

′

〈c0;c1,σ〉 → σ
′

We assume

P(〈c0,σ〉 → σ
′′) def

= C Jc0Kσ = σ
′′

P(
〈
c1,σ

′′〉→ σ
′) def

= C Jc1Kσ
′′ = σ

′

We want to prove

P(〈c0;c1,σ〉 → σ
′) def
= C Jc0;c1Kσ = σ

′

By the denotational semantics definition and the inductive hypotheses

C Jc0;c1Kσ = C Jc1K∗ (C Jc0Kσ) = C Jc1K∗σ
′′ = C Jc1Kσ

′′ = σ
′

Note that the lifting operator can be removed because σ ′′ 6= ⊥ by the
inductive hypothesis.

iftt: Let us consider the rule

〈b,σ〉 → true 〈c0,σ〉 → σ
′

〈if b then c0 else c1,σ〉 → σ
′

We assume

• 〈b,σ〉 → true and therefore B JbKσ = true by the correspondence
between the operational and denotational semantics for boolean ex-
pressions;

• P(〈c0,σ〉 → σ ′) def
= C Jc0Kσ = σ ′
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We want to prove

P(〈if b then c0 else c1,σ〉 → σ
′) def
= C Jif b then c0 else c1Kσ = σ

′

In fact, we have

C Jif b then c0 else c1Kσ = B JbKσ → C Jc0Kσ ,C Jc1Kσ

= true→ σ
′,C Jc1Kσ

= σ
′

ifff: The proof for the second rule of the conditional command is completely
analogous to the previous one and thus omitted.

whff: Let us consider the rule

〈b,σ〉 → false

〈while b do c,σ〉 → σ

We assume 〈b,σ〉 → false and therefore B JbKσ = false.
We want to prove

P(〈while b do c,σ〉 → σ)
def
= C Jwhile b do cKσ = σ

By the fixpoint property of the denotational semantics

C Jwhile b do cKσ = B JbKσ → C Jwhile b do cK∗ (C JcKσ),σ

= false→ C Jwhile b do cK∗ (C JcKσ),σ

= σ

whtt: At last we consider the second rule of the while command:

〈b,σ〉 → true 〈c,σ〉 → σ
′′ 〈

while b do c,σ ′′
〉
→ σ

′

〈while b do c,σ〉 → σ
′

We assume

• 〈b,σ〉 → true and therefore B JbKσ = true
• P(〈c,σ〉 → σ ′′) def

= C JcKσ = σ ′′

• P(〈while b do c,σ ′′〉 → σ ′) def
= C Jwhile b do cKσ ′′ = σ ′

We want to prove

P(〈while b do c,σ〉 → σ
′) def
= C Jwhile b do cKσ = σ

′

By the definition of the denotational semantics and the inductive hypotheses
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C Jwhile b do cKσ = B JbKσ → C Jwhile b do cK∗ (C JcKσ) ,σ

= true→ C Jwhile b do cK∗σ
′′,σ

= C Jwhile b do cK∗σ
′′

= C Jwhile b do cKσ
′′

= σ
′

Note that the lifting operator can be removed since σ ′′ 6=⊥.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for all c ∈Com

P(c) def
= ∀σ ,σ ′ ∈ Σ . C JcKσ = σ

′⇒ 〈c,σ〉 → σ
′

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip) def
= ∀σ ,σ ′. C JskipKσ = σ

′⇒ 〈skip,σ〉 → σ
′

By definition we have C JskipKσ = σ and 〈skip,σ〉 → σ is an axiom of
the operational semantics.

assign: We need to prove

P(x := a) def
= ∀σ ,σ ′. C Jx := aKσ = σ

′⇒ 〈x := a,σ〉 → σ
′

By the denotational semantics definition we have σ ′ = σ [A JaKσ/x] and
by the equivalence between operational and denotational semantics for
expressions we have 〈a,σ〉 →A JaKσ , thus we can apply the rule (assign)
to conclude

〈x := a,σ〉 → σ [A JaKσ/x]

seq: We assume

• P(c0)
def
= ∀σ ,σ ′′. C Jc0Kσ = σ ′′⇒ 〈c0,σ〉 → σ ′′

• P(c1)
def
= ∀σ ′′,σ ′. C Jc1Kσ ′′ = σ ′⇒ 〈c1,σ

′′〉 → σ ′

We want to prove

P(c0;c1)
def
= ∀σ ,σ ′. C Jc0;c1Kσ = σ

′⇒ 〈c0;c1,σ〉 → σ
′

Let us assume C Jc0;c1Kσ = σ ′, the premise of the implication, and prove
the conclusion 〈c0;c1,σ〉 → σ ′. We have
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C Jc0;c1Kσ = C Jc1K∗ (C Jc0Kσ) = σ
′

Since σ ′ 6= ⊥, it must be that C Jc0Kσ 6= ⊥, i.e., we can assume the
termination of c0 and thus omit the lifting operator:

C Jc0;c1Kσ = C Jc1K(C Jc0Kσ) = σ
′

Let C Jc0Kσ = σ ′′. We have C Jc1Kσ ′′ = σ ′. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get 〈c0,σ〉 → σ ′′

and 〈c1,σ
′′〉 → σ ′. Thus we can apply the inference rule:

〈c0,σ〉 → σ
′′ 〈

c1,σ
′′〉→ σ

′

〈c0;c1,σ〉 → σ
′

to conclude 〈c0;c1,σ〉 → σ ′.
if: We assume

• P(c0)
def
= ∀σ ,σ ′. C Jc0Kσ = σ ′⇒ 〈c0,σ〉 → σ ′

• P(c1)
def
= ∀σ ,σ ′. C Jc1Kσ = σ ′⇒ 〈c1,σ〉 → σ ′

We need to prove

P(if b then c0 else c1)
def
= ∀σ ,σ ′. C Jif b then c0 else c1Kσ = σ ′

⇒ 〈if b then c0 else c1,σ〉 → σ ′

Let us assume the premise C Jif b then c0 else c1Kσ = σ ′ and prove the
conclusion 〈if b then c0 else c1,σ〉 → σ ′. By definition

C Jif b then c0 else c1Kσ = B JbKσ → C Jc0Kσ ,C Jc1Kσ

Now, either B JbKσ = false or B JbKσ = true.
If B JbKσ = false, we have also 〈b,σ〉 → false. Then

C Jif b then c0 else c1Kσ = C Jc1Kσ = σ
′

By modus ponens on the inductive hypothesis P(c1) we have 〈c1,σ〉 → σ ′.
Thus we can apply the rule

〈b,σ〉 → false 〈c1,σ〉 → σ
′

〈if b then c0 else c1,σ〉 → σ
′

to conclude 〈if b then c0 else c1,σ〉 → σ ′.
The case where B JbKσ = true is completely analogous and thus omitted.

while: We assume

P(c) def
= ∀σ ,σ ′′. C JcKσ = σ

′′⇒ 〈c,σ〉 → σ
′′
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We need to prove

P(while b do c) def
= ∀σ ,σ ′. C Jwhile b do cKσ = σ ′

⇒ 〈while b do c,σ〉 → σ ′

By definition C Jwhile b do cKσ = fix Γb,c σ =
(⊔

n∈NΓ n
b,c⊥

)
σ so

C Jwhile b do cKσ = σ ′⇒ 〈while b do c,σ〉 → σ ′

⇔(⊔
n∈NΓ n

b,c⊥
)

σ = σ ′⇒ 〈while b do c,σ〉 → σ ′

⇔(
∃n ∈ N. (Γ n

b,c⊥)σ = σ ′
)
⇒ 〈while b do c,σ〉 → σ ′

⇔
∀n ∈ N.

(
Γ n

b,c⊥σ = σ ′⇒ 〈while b do c,σ〉 → σ ′
)

Let A(n) def
= ∀σ ,σ ′. Γ n

b,c⊥σ = σ ′⇒ 〈while b do c,σ〉 → σ ′.
We prove that ∀n ∈ N. A(n) by mathematical induction.

Base case: We have to prove A(0), namely

∀σ ,σ ′. Γ
0

b,c⊥σ = σ
′⇒ 〈while b do c,σ〉 → σ

′

Since Γ 0
b,c⊥σ = ⊥σ = ⊥ and σ ′ 6= ⊥ the premise is false

and hence the implication is true.
Ind. case: Let us assume

A(n) def
= ∀σ ,σ ′. Γ

n
b,c⊥σ = σ

′⇒ 〈while b do c,σ〉 → σ
′

We want to show that

A(n+1) def
= ∀σ ,σ ′.Γ

n+1
b,c ⊥σ =σ

′⇒〈while b do c,σ〉→σ
′

We assume Γ
n+1

b,c ⊥σ = Γb,c

(
Γ n

b,c⊥
)

σ = σ ′, that is

B JbKσ →
(
Γ

n
b,c⊥

)∗
(C JcKσ) ,σ = σ

′

Now either B JbKσ = false or B JbKσ = true.
• If B JbKσ = false, we have 〈b,σ〉 → false and σ ′ = σ .

Now by using the rule (whff)

〈b,σ〉 → false

〈while b do c,σ〉 → σ

we conclude 〈while b do c,σ〉 → σ .
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• if B JbKσ = true we have 〈b,σ〉 → true and(
Γ

n
b,c⊥

)∗
(C JcKσ) = σ

′

Since σ ′ 6= ⊥ there must exist some σ ′′ 6= ⊥ with
C JcKσ = σ ′′ and by structural induction 〈c,σ〉 → σ ′′.

Since
(

Γ n
b,c⊥

)∗
(C JcKσ) =

(
Γ n

b,c⊥
)

σ ′′ = σ ′ we have
by the mathematical induction hypothesis A(n) that〈

while b do c,σ ′′
〉
→ σ

′

Finally, by using the rule (whtt)

〈b,σ〉 → true 〈c,σ〉 → σ
′′ 〈

while b do c,σ ′′
〉
→ σ

′

〈while b do c,σ〉 → σ
′

we conclude 〈while b do c,σ〉 → σ ′.

6.4 Computational Induction

How are we able to prove properties about fixpoints? To fill this gap we introduce
Scott’s computational induction, which applies to a class of properties corresponding
to inclusive sets.

Definition 6.10 (Inclusive property). Let (D,v) be a CPO, let P⊆ D be a set. We
say that P is an inclusive set if and only if

(∀n ∈ N. dn ∈ P)⇒
⊔

n∈N
dn ∈ P

A property is inclusive if the set of values on which it holds is inclusive.

Intuitively, a set P is inclusive if whenever we form a chain out of elements in P,
then the limit of the chain is also in P, i.e., P is inclusive if and only if it forms a
CPO.

Example 6.9 (Non-inclusive property). Let ({a,b}∗ ∪{a,b}∞,v) be a CPO where
xv y⇔∃z. y = xz. So the elements of the CPO are sequences of a and b and xv y
iff x is a finite prefix of y. Let us now define the following property:

• x ∈ {a,b}∗∪{a,b}∞ is fair iff 6 ∃y ∈ {a,b}∗. x = ya∞ ∨ x = yb∞

Fairness is the property of an arbiter which does not favour one of two competitors
all the time from some point on. Fairness is not inclusive, indeed,

• the sequence an is finite and thus fair for any n ∈ N;
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• ⊔
n∈N an = a∞;

• a∞ is obviously not fair.

Theorem 6.4 (Computational induction). Let P be a property, (D,v) a CPO⊥ and
f a monotone and continuous function on it. Then the inference rule

P inclusive ⊥ ∈ P ∀d ∈ D. (d ∈ P⇒ f (d) ∈ P)

fix f ∈ P

is sound.

Proof. Given the second and third premises, it is easy to prove by mathematical
induction that ∀n. f n(⊥) ∈ P. Then also

⊔
n∈N f n(⊥) ∈ P since P is inclusive, and

fix( f ) =
⊔

n∈N f n(⊥). ut
Example 6.10 (Computational induction). Let us consider the command

w def
= while x 6= 0 do x := x−1

from Example 6.8. We want to prove the property

C Jwhile x 6= 0 do x := x−1Kσ = σ
′⇒ σx≥ 0∧σ

′ = σ [0/x]

By definition

C JwK = fix Γ where Γ
def
= λϕ. λσ . σx 6= 0→ ϕσ [σx−1/x],σ

Let us define the property

P(ϕ) def
= ∀σ ,σ ′. (ϕσ = σ

′⇒ σx≥ 0∧σ
′ = σ [0/x])

We will show that the property is inclusive, that is, given a chain {ϕi}i∈N we have

(∀i ∈ N. P(ϕi))⇒ P(
⊔
i∈N

ϕi)

Let us assume ∀i ∈ N. P(ϕi), namely that

∀i,σ ,σ ′.
(
ϕiσ = σ

′⇒ σx≥ 0∧σ
′ = σ [0/x]

)
We want to prove that

∀σ ,σ ′.

(
(
⊔
i∈N

ϕi)σ = σ
′⇒ σx≥ 0∧σ

′ = σ [0/x]

)

Suppose (
⊔

i∈Nϕi)σ = σ ′. We are left to prove that σx ≥ 0∧ σ ′ = σ [0/x]. By
(
⊔

i∈Nϕi)σ = σ ′ we have that ∃k ∈ N. ϕkσ = σ ′. Then we can conclude the thesis
by P(ϕk).
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We can now apply the computational induction

P inclusive P(⊥) ∀ϕ. P(ϕ)⇒ P(Γ ϕ)

P(fix Γ )

as P(fix Γ ) = P(C JwK).

P inclusive: It has been proved above.
P(⊥): It is obvious, since ⊥σ = σ ′ is always false.
∀ϕ. P(ϕ)⇒ P(Γ ϕ): We assume

P(ϕ) def
= ∀σ ,σ ′. (ϕσ = σ

′⇒ σx≥ 0∧σ
′ = σ [0/x])

and we want to prove

P(Γ ϕ) = ∀σ ,σ ′. (Γ ϕσ = σ
′⇒ σx≥ 0∧σ

′ = σ [0/x])

We assume the premise

Γ ϕσ =
(
σx 6= 0→ ϕσ [σx−1/x],σ

)
= σ

′

and need to prove that σx≥ 0∧σ ′ = σ [0/x]. There are two
cases to consider:

• If σx = 0, we have

(σx 6= 0→ ϕσ [σx−1/x],σ) = σ

therefore σ ′ = σ and trivially

σx = 0≥ 0 σ
′ = σ = σ [0/x]

• If σx 6= 0, we have

(σx 6= 0→ ϕσ [σx−1/x],σ) = ϕσ [σx−1/x]

Let σ ′′ = σ [σx−1/x]. We exploit P(ϕ) over σ ′′,σ ′:

ϕ σ [σx−1/x]︸ ︷︷ ︸
σ ′′

= σ
′⇒ σ

′′x≥ 0∧σ
′ = σ

′′[0/x]

We have

σ
′′x≥ 0⇔ σ [σx−1/x]x≥ 0⇔ σx≥ 1⇒ σx≥ 0

σ
′ = σ

′′[0/x] = σ [σx−1/x][
0/x] = σ [0/x]
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Finally, we can conclude by computational induction that
the property P holds for the fixpoint fix Γ and thus for the
semantics of the command w as C JwK = fix Γ .

Problems

6.1. The following problems serve to get acquainted with the use of variables in the
lambda notation.

1. Is λx. λx. x α-convertible to one or more of the following expressions?

a. λy. λx. x
b. λy. λx. y
c. λy. λy. y
d. λx. λy. x
e. λ z. λw. w

2. Is ((λx. λy. x) y) equivalent to one or more of the following expressions?

a. λy. λy. y
b. λy. y
c. λy. z
d. λ z. y
e. λx. y

6.2. Prove Theorem 6.2.

6.3. Prove that the commands

c def
= x := 0; if x = 0 then c1 else c2 c′ def

= x := 0; c1

are semantically equivalent for any commands c1,c2. Carry out the proof using both
the operational semantics and the denotational semantics.

6.4. Prove that the two commands

w def
= while b do c w′ def

= while b do (if b then c else skip)

are equivalent for any b and c using the denotational semantics.

6.5. Prove that C Jwhile true do skipK = C Jwhile true do x := x+1K.

6.6. Prove that C Jwhile x 6= 0 do x := 0K = C Jx := 0K.

6.7. Prove that

C Jwhile x = 0 do skipK = C Jif x = 0 then (while true do x := 0) else skipK .



6.4 Computational Induction 153

6.8. Add to IMP the command

repeat n times c

with n a natural number. Its denotational semantics is

C Jrepeat n times cKσ = (C JcK)n
σ

1. Define the operational semantics of the repeat command.
2. Extend the proof of equivalence of the operational and denotational semantics of

IMP to take into account the new command.
3. Prove that, when the “while” construct is replaced by the “repeat” construct in the

syntax of IMP, then the execution of every command terminates.

6.9. Add to IMP the command

reset x in c

with the following informal meaning: execute the command c in the state where x is
reset to 0, then after the execution of c reassign to location x its original value.

1. Define the operational semantics of the new command.
2. Define the denotational semantics of the new command.
3. Extend the proof of equivalence of the operational and denotational semantics of

IMP to take into account the new command.

6.10. Add to IMP the command

do c undoif b

with the following informal meaning: execute c; if after the execution of c the boolean
expression b is satisfied, then go back to the state before the execution of c.

1. Define the operational semantics of the new command.
2. Define the denotational semantics of the new command.
3. Extend the proof of equivalence of the operational and denotational semantics of

IMP to take into account the new command.

6.11. Extend IMP with the command

try c1 = c2 else c3

that returns the store obtained by computing c1 if it coincides with the one obtained
by computing c2; if they differ it returns the store obtained by computing c3; it
diverges otherwise.

1. Define the operational semantics of the new command.
2. Define the denotational semantics of the new command.
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3. Extend the proof of equivalence of the operational and denotational semantics of
IMP to take into account the new command.

6.12. Consider the IMP command

w def
= while y > 0 do (r := r× x ; y := y−1)

Compute the denotational semantics C JwK = fix Γ .

Hint: Prove that letting ϕn
def
= Γ n⊥Σ→Σ⊥ it holds that ∀n≥ 1

ϕn = λσ . (σy > 0)→ ( (σy≥ n)→⊥Σ⊥ , σ [σr×(σx)σy
/r,

0 /y] ) , σ .

6.13. Consider the IMP command

w def
= while x 6= 0 do (x := x−1 ; y := y+1)

Prove, using Scott’s computational induction, that for all σ ,σ ′ we have

C JwKσ = σ
′ ⇒ σ(x)≥ 0∧σ

′ = σ [σ(x)+σ(y)/y,
0 /x]



Part III
HOFL: a Higher-Order Functional

Language



This part focuses on models for sequential computations that are associated with
HOFL, a higher-order declarative language that follows the functional style. Chapter 7
presents the syntax, typing and operational semantics of HOFL, while Chapter 9
defines its denotational semantics. The two are related in Chapter 10. Chapter 8
extends the theory presented in Chapter 5 to allow the definition of more complex
domains, as needed by the type constructors available in HOFL.



Chapter 7
Operational Semantics of HOFL

Typing is no substitute for thinking. (Richard Hamming)

Abstract In the previous part of the book we have introduced and studied an im-
perative language called IMP. In this chapter we move our attention to functional
languages. In particular, we introduce HOFL, a simple higher-order functional lan-
guage that allows for the explicit construction of infinitely many types. We overview
Church and Curry type theories. Then, we present a lazy operational semantics,
which corresponds to a call-by-name strategy, namely actual parameters are passed to
functions without evaluating them. This view is contrasted with the eager evaluation
semantics, which corresponds to a call-by-value strategy, where all actual parameters
are evaluated before being passed to functions. The operational semantics evaluates
(well-typed) terms to suitable canonical forms.

7.1 Syntax of HOFL

We start by introducing the plain syntax of HOFL. Then we discuss the type theory
and define the well-formed terms. Finally we present the operational semantics of
well-formed terms, which reduces terms to their canonical form (when they exist).

In IMP there are only three types: Aexp for arithmetic expressions, Bexp for
boolean expressions and Com for commands. Since IMP does not allow explicit
construction of other types, these types are directly embedded in its syntax. HOFL,
instead, allows one to define a variety of types, so we first present the grammar for
pre-terms, then we introduce the concept of typed terms, namely the well-formed
sentences of HOFL. Due to the context-sensitive constraints induced by the types, it
is possible to see that well-formed terms could not be defined by a syntax expressed
in a context-free format. We assume a set Var of variables is given.

Definition 7.1 (HOFL syntax). The following productions define the syntax of
HOFL pre-terms:

© Springer International Publishing Switzerland 2017
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t ::= x | n | t0 + t1 | t0− t1 | t0× t1 | if t then t0 else t1 |
(t0, t1) | fst(t) | snd(t) | λx. t | (t0 t1) | recx. t

where x is a variable and n an integer.

Besides usual variables x, constants n and arithmetic operators +,−,×, we find
a conditional construct if t then t0 else t1 that reads as if t = 0 then t0 else t1;
the constructs for pairing terms (t0, t1) and for projecting over the first and second
component of a pair fst(t) and snd(t); function abstraction λx. t and application
(t0 t1); and recursive definition recx. t. Recursion allows us to define recursive terms,
namely recx. t defines a term t that can contain variable x, which in turn can be
replaced by its recursive definition recx. t.

We call pre-terms the terms generated by the syntax above, because it is evident
that one could write ill-formed terms, for example by applying a projection to an
integer instead of a pair (fst(1)) or summing an integer to a function (1+λx. x). To
avoid these constructions we introduce the concepts of type and typed term.

7.1.1 Typed Terms

Definition 7.2 (HOFL types). A HOFL type is a term constructed by using the
following grammar:

τ ::= int | τ0 ∗ τ1 | τ0→ τ1

We let T denote the set of all types.

We allow constant type int, the pair type τ0 ∗ τ1 and the function type τ0→ τ1.
Using these productions we can define infinitely many types, such as (int ∗ int)→ int
for functions that take as argument a pair of integers and return an integer, and
int→ (int ∗(int→ int)) for functions that take an integer and return an integer paired
with a function from integers to integers.

Now we define the rule system which allows us to say whether a pre-term of HOFL
is well-formed (i.e., whether we can associate a type expressed in the above grammar
with a given pre-term). The predicates we are interested in are of the form t : τ ,
expressing that the pre-term t is well-formed and has type τ . We assume variables
are typed, i.e., that a function (̂·) : Var→T is given, which assigns a unique type to
each variable.

x : x̂
The rule for variables assigns to each variable x its type x̂.

n : int

t0 : int t1 : int

t0 op t1 : int
op ∈ {+,−,×}

t : int t0 : τ t1 : τ

if t then t0 else t1 : τ
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The rules for arithmetic expressions assign type int to each integer n and to each
expression built using +,−,×, whose arguments must be of type int too. The rule
for conditional expressions if t then t0 else t1 : τ requires the condition t to be of
type int and the two branches t0 and t1 to have the same type τ , which is also the
type of the conditional expression.

t0 : τ0 t1 : τ1

(t0, t1) : τ0 ∗ τ1

t : τ0 ∗ τ1

fst(t) : τ0

t : τ0 ∗ τ1

snd(t) : τ1

The rule for pairing says that the type of a term (t0, t1) is the pair type τ0 ∗ τ1,
where ti has type τi for i = 0,1. Vice versa, for projections it is required that the
argument t has pair type τ0 ∗ τ1 for some τ0 and τ1, and the result has type τ0 when
the first projection is used or τ1 when the second projection is used.

x : τ0 t : τ1

λx. t : τ0→ τ1

t1 : τ0→ τ1 t0 : τ0

(t1 t0) : τ1

The rule for function abstraction assigns to λx. t the functional type τ0 → τ1,
where τ0 is the type of x and τ1 is the type of t. In the case of function application
(t1 t0), it is required that t1 has functional type τ0 → τ1 for some types τ0 and τ1,
where τ0 is also the type of t0. Then, the result has type τ1.

x : τ t : τ

rec x. t : τ

The last rule handles recursion: it check that the type τ of the defining expression
t is the same as the type of the recursively defined name x; if so, then τ is also the
type of the recursive expression rec x. t.

Definition 7.3 (Well-formed terms). Let t be a pre-term of HOFL. We say that t is
well-formed (or well-typed, or typable) if there exists a type τ such that t : τ .

We name Tτ the set of well-formed terms of type τ .
Note that our type system is very simple. Indeed it does not allow us to construct

useful types, such as recursive, parametric, dependent, polymorphic or abstract types.
These limitations imply that many useful terms are discarded. For instance, while it
is easy to express the types for lists of integer numbers of fixed length (using the type
pairing operator ∗) and functions that manipulate them, in our type system lists of
integers of variable length are not typable, because some form of recursion is needed
at the level of types to express them.



160 7 Operational Semantics of HOFL

7.1.2 Typability and Typechecking

As we said in the last section we will give semantics only to well-formed terms,
namely terms which have a type in our type system. Therefore we need an algorithm
to decide whether a term is well-formed. In this section we will present two different
solutions to the typability problem, introduced by Church and by Curry, respectively.

7.1.2.1 Church Type Theory

In Church type theory we explicitly associate a type with each variable and deduce
the type of each term by structural recursion (i.e., by using the inference rules in a
bottom-up fashion).

In this case, we sometimes directly annotate the bounded variables with their type,
for example λx : int. x+ x or rec f : int→ int. λx : int. f x.

Example 7.1 (Factorial with Church types). Let x : int and f : int → int in the pre-
term

fact def
= rec f . λx. if x then 1 else (x× ( f (x−1)))

So we can type fact and all its subterms as below:

f̂ = int→ int

f : int→ int

x̂ = int

x : int

x̂ = int

x : int 1 : int

x̂ = int

x : int

f̂ = int→ int

f : int→ int

x̂ = int

x : int 1 : int

x−1 : int

f (x−1) : int

(x× ( f (x−1))) : int

if x then 1 else (x× ( f (x−1))) : int

λx. if x then 1 else (x× ( f (x−1))) : int→ int

fact : int→ int

More concisely, we write

fact def
= rec f

int→int

.λ x
int

. if x
int

then 1
int

else x
int

×( f
int→int

( x
int

− 1
int

int

int

))

int

int

int→int

: int→ int
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7.1.2.2 Curry Type Theory

In Curry style, we do not need to explicitly declare the type of each variable. Instead
we use the inference rules to calculate type equations (i.e., equations which have
types as variables) whose solutions define all the possible type assignments for the
term. This means that the result will be a set of types associated with the typed term.
The surprising fact is that this set can be represented as all the instances of a single
type term with variables, where one instance is obtained by freely replacing each
variable with any type. We call this term with variables the principal type of the term.
This construction is made by using the rules in a goal-oriented fashion, as we have
done in Example 7.5.

Example 7.2 (Identity). Let us consider the identity function

λx. x

By using the type system we have

λx. x : τ ↖τ=τ1→τ2, x̂=τ1
x : τ2

↖x̂=τ2
2

So we have x̂ = τ1 = τ2 and the principal type of λx. x is τ1→ τ1. Now each solution
of the type equation will be an identity function for a specified type. For example if
we set τ1 = int we have τ = int → int, but if we set τ1 = int ∗ (int → int) we have
τ = (int ∗ (int→ int))→ (int ∗ (int→ int)).

Example 7.3 (Non-typable term of HOFL). Let us consider the following function,
which computes the factorial without using recursion.

begin
fact( f ,x) def

= if x = 0 then 1 else x× f ( f ,x−1)
fact(fact,3)

end

The first instruction defines fact as a function that takes two arguments (e.g., a
function f and an integer x) and returns 1 if x= 0 and returns x× f ( f ,x−1) otherwise.
The second instruction invokes fact by passing fact as a first argument and the
number 3 as second argument. Since 3 6= 0, the invocation will trigger the calculation
3× fact(fact,2) and so on. It can be translated to HOFL as follows:

fact def
= λy. if snd(y) = 0 then 1 else snd(y)× fst(y)(fst(y),snd(y)−1)

We can try to infer the type of fact as follows:



162 7 Operational Semantics of HOFL

λ y
τ1

. if snd( y
τ1=τ2∗int

)

int

then 1
int

else snd(y)
int

×( fst(y)
τ2=(τ2∗int)→int

(fst(y)
τ2

, snd(y)
int

− 1
int

int

)

τ2∗int

int

int

int

(τ2∗int)→int

We derive fst(y) : τ2 and fst(y) : (τ2 ∗ int)→ int. Thus we have τ2 = (τ2 ∗ int)→ int
which has no solution.

We recall the unification algorithm from Section 2.1.4, which can be used to solve
general systems of type equations as well. We recall it here, in compact form, to
explicitly address the unification of terms that denote types. The idea is that types
are terms built over a suitable signature. In the case of HOFL, the signature just
consists of the constant int and two binary operators ∗ and →, and variables are
usually denoted as τs. We start from a system of type equations of the form

t1 = t ′1
t2 = t ′2
· · ·
tk = t ′k

and then we apply iteratively in any order the following steps:

1. We eliminate all the equations of the form τ = τ for τ a type variable.
2. For each equation of the form f (u1, . . . ,un) = f ′(u′1, . . . ,u

′
m)

1

if f 6= f ′: then the system has no solutions and we stop.
if f = f ′: then n = m so we must have

u1 = u′1,u2 = u′2, . . . ,un = u′n

and thus we replace the original equation with these.

3. For each equation of the form τ = t with t 6= τ:

if τ appears in t: then the system has no solutions.
if τ does not appear in t: we replace each occurrence of τ with t in all the other

equations.

Eventually, either the system is recognised as unsolvable, or all the variables in the
original equations are assigned to solution terms. Note that the order of the step
executions can affect the complexity of the algorithm but not the solution. The best

1 In our case f and f ′ can be taken from {int,∗,→}.
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execution strategies yield a complexity linear or quasi-linear in the size of the original
system of equations.

Example 7.4. Let us now apply the algorithm to the Example 7.3. We have the type
equation

τ2 = (τ2 ∗ int)→ int

1. We cannot apply step 1 of the algorithm, because the equation does not express a
trivial equality.

2. We cannot apply step 2 either, because the left-hand side of the equation consists
of a variable and not of an operator applied to some subterms, as required.

3. Step 3 can be applied and it fails, because the type variable τ2 appears in the
right-hand side.

Here we show another interesting term which is not typable.

Example 7.5 (Non-typable terms). Let us define a pre-term t which, when applied to
the argument 0, should define the list of all even numbers:

t def
= rec p. λx. (x,(p (x+2)))

Intuitively, the application t 0 takes the value 0 and places it in the first position of a
pair whose second component is the term t itself applied to 0+2 = 2, so recursively
t 0 should represent the infinite list of all even numbers:

t 0≡ (0,(t 2))≡ (0,(2,(t 4)))≡ ·· · ≡ (0,(2,(4, . . .)))

Let us show that this term is not typable:

t = rec p. λx. (x,(p (x+2))) : τ ↖ p̂=τ λx. (x,(p (x+2))) : τ

↖τ=τ1→τ2, x̂=τ1
(x,(p (x+2))) : τ2

↖τ2=τ3∗τ4
x : τ3, (p (x+2)) : τ4

↖x̂=τ3
(p (x+2)) : τ4

↖ p : τ5→ τ4, (x+2) : τ5

↖p̂=τ5→τ4
(x+2) : τ5

↖τ5=int x : int

↖x̂=int 2

So we have

x̂= τ1 = τ3 = τ5 = int τ2 =(τ3∗τ4)= (int ∗τ4) τ =(τ1→ τ2)= (int→ (int ∗τ4))

From which

p̂ = τ = (int→ (int ∗ τ4)) and p̂ = (τ5→ τ4) = (int→ τ4)

Thus it must be the case that
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int ∗ τ4 = τ4

which is absurd, because it is not possible to unify τ4 with a composite term con-
taining an occurrence of τ4. The above argument is represented more concisely
below:

t = rec p. λ x
int

. ( x
int

,( p
int→τ4

( x
int

+ 2
int

)

int

)

τ4

)

int∗τ4

(int→(int∗τ4)) = (int→τ4)⇒ τ4=(int∗τ4)

So we have no solutions, and the term is not a well-formed term.

7.2 Operational Semantics of HOFL

In Section 6.1 we have defined the concepts of free variables and substitution for the
λ -calculus. Now we define the same concepts in the case of HOFL, which will be
necessary to define its operational semantics.

Definition 7.4 (Free variables). We define the set of free variables of HOFL terms
by structural recursion, as follows:

fv(n) def
= ∅

fv(x) def
= {x}

fv(t0 op t1)
def
= fv(t0)∪ fv(t1)

fv(if t then t0 else t1)
def
= fv(t)∪ fv(t0)∪ fv(t1)

fv((t0, t1))
def
= fv(t0)∪ fv(t1)

fv(fst(t)) def
= fv(t)

fv(snd(t)) def
= fv(t)

fv(λx. t) def
= fv(t)\{x}

fv((t0 t1))
def
= fv(t0)∪ fv(t1)

fv(rec x. t) def
= fv(t)\{x}

Finally as we did for λ -calculus we define the substitution operator in HOFL.

Definition 7.5 (Capture-avoiding substitution). Capture avoiding substitution [t/x]
of x with t is defined by structural recursion over HOFL terms as follows:
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n[t/x] = n

y[t/x]
def
=

{
t if y = x
y if y 6= x

(t0 op t1)[t/x]
def
= t0[t/x] op t1[t/x] with op ∈ {+,−,×}

(if t ′ then t0 else t1)[t/x]
def
= if t ′[t/x] then t0[t/x] else t1[t/x]

(t0, t1)[t/x]
def
= (t0[t/x], t1[t/x])

fst(t ′)[t/x]
def
= fst(t ′[t/x])

snd(t ′)[t/x]
def
= snd(t ′[t/x])

(t0 t1)[t/x]
def
= (t0[t/x] t1[t/x])

(λy. t ′)[t/x]
def
= λ z. ( t ′[z/y][

t/x] ) for z /∈ fv(λy. t ′)∪ fv(t)∪{x}
(rec y. t ′)[t/x]

def
= rec z. (t ′[z/y][

t/x]) for z /∈ fv(rec y. t ′)∪ fv(t)∪{x}

Note that in the last two rules we perform α-conversion [z/y] of the bound variable
y with a fresh identifier z before the substitution. This ensures that the free occurrences
of y in t, if any, are not bound accidentally after the substitution. As discussed
in Section 6.1, the substitution is well defined if we consider the terms up to α-
conversion (i.e., up to the renaming of bound variables). Obviously, we would like
to extend these concepts to typed terms. So we are interested in understanding how
substitution and α-conversion interact with typing. We have the following results.

Theorem 7.1 (Substitution respects types). Let x, t : τ and t ′ : τ ′. Then, we have

t ′[t/x] : τ
′

Proof. The proof is in two steps. First we prove by rule induction the stronger
predicate (for any term t ′ and type τ ′)

P(t ′ : τ
′) def
= ∀x, t : τ. ∀n ∈ N. ∀x1,z1 : τ1, ...,xn,zn : τn. t ′[z1/x1 , · · · ,zn /xn ,

t /x] : τ
′

Second, the main statement of the theorem follows as the special case where n = 0.
The stronger assertion is needed for handling the cases of functions (i.e., t ′ = λy. t ′′

for some y and t ′′) and recursive expressions (i.e., t ′ = rec y. t ′′ for some y and t ′′),
which are the only non-trivial cases (because of the way in which capture-avoiding
substitution is defined). The reader is left to fill in the missing details of the proof as
an exercise. ut

We are now ready to present the operational semantics of HOFL. Unlike IMP, the
operational semantics of HOFL is a simple manipulation of terms. This means that
the operational semantics of HOFL defines a method to calculate the canonical form
of a given term of HOFL. In particular, we focus on closed terms only, i.e., terms
t with no free variables (fv(t) = ∅). Canonical forms are particular closed terms,
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which we will assume to be the results of calculations (i.e., as ordinary values). For
each type we fix the set of terms in canonical form by taking a subset of terms which
reasonably represent the notion of values for that type.

As shown in the previous section, HOFL has three type constructors: the constant
int, and the binary operators ∗ for pairs and→ for functions. Terms which represent
the integers provide the obvious canonical forms for the integer type. For pair types
we take any pair of terms as canonical form: note that this choice is arbitrary; for
example we could have taken instead pairs of terms that are themselves in canonical
form. We will explain later the rationale of our choice. Finally, since HOFL is a higher-
order language, functions are values. So it is quite natural to take all abstractions as
canonical forms for the arrow type.

Definition 7.6 (Canonical forms). Let us define a set Cτ of canonical forms for each
type τ as follows:

n ∈Cint

t0 : τ0 t1 : τ1 t0, t1 closed

(t0, t1) ∈Cτ0∗τ1

λx. t : τ0→ τ1 λx. t closed

λx. t ∈Cτ0→τ1

We now define the rules of the operational semantics; these rules define an evaluation
relation:

t→ c

where t is a well-formed closed term of HOFL and c is its canonical form.
For terms that are already in canonical form according to Definition 7.6 we let

c→ c

For clarity, the above rule offers a concise representation of the otherwise verbose
rules

n→ n

t0 : τ0 t1 : τ1 t0, t1 closed

(t0, t1)→ (t0, t1)

λx. t : τ0→ τ1 λx.t closed

λx. t→ λx. t

Next, we give the rules for arithmetic expressions:

t0→ n0 t1→ n1

t0 op t1→ n0 op n1

t→ 0 t0→ c0

if t then t0 else t1→ c0

t→ n n 6= 0 t1→ c1

if t then t0 else t1→ c1

For the arithmetic operators the semantics is obviously the simple application
of the corresponding meta-operator as in IMP. Only, here we distinguish between
HOFL syntactic operators and meta-operators by underlying the latter. For instance,
we have 1+2→ 3, since 1→ 1, 2→ 2 and 1+2 = 3.

We recall that for the conditional statement, since we have no boolean values, we
use the convention that if t then t0 else t1 stands for if t = 0 then t0 else t1, so the
premise t→ n 6= 0 means the test is false and t→ 0 means the test is true.



7.2 Operational Semantics of HOFL 167

Let us now consider pairing. Obviously, since we consider pairs as canonical
values, we do not have to add further rules for simple pairs. We have instead two
rules for projections:

t→ (t0, t1) t0→ c0

fst(t)→ c0

t→ (t0, t1) t1→ c1

snd(t)→ c1

The rules are obviously similar: the canonical form of t is computed, which
must be of the form (t0, t1), because t must have pair type for the projection to be
applicable and fst(t) (and snd(t)) typable. Note however that t0 and t1 need not be
in canonical form. So only the canonical form of the component indicated by the
projection operator is computed, with the other component discarded.

Function abstraction is handled by the axiom for terms already in canonical form,
as in the case of pairing. For function application, we show two rules, according
to two different evaluation strategies, called lazy and eager. In the lazy operational
semantics, we do not evaluate the canonical forms of the parameters when passing
them to the function body. The lazy semantics will be our primary focus in the rest
of this part of the book concerned with HOFL:

t1→ λx. t ′1 t ′1[
t0/x]→ c

(t1 t0)→ c
(lazy)

We remark that in the second premise of the rule, we replace each occurrence of x
in t ′1 with t0, i.e., we replace each instance of x with a copy of the (non-evaluated)
parameter t0 and not with its canonical form.

For the sake of discussion let us consider the eager alternative to this rule:

t1→ λx. t ′1 t0→ c0 t ′1[
c0/x]→ c

(t1 t0)→ c
(eager)

Unlike the lazy semantics, the eager semantics evaluates the parameters only once
and does so before the substitution. Note that these two types of evaluation are not
equivalent. If the evaluation of the argument does not terminate, and it is not needed,
the lazy rule will guarantee convergence, while the eager rule will diverge. Vice
versa, according to the lazy semantics, if the argument is actually needed it may later
be evaluated several times (every time it is used).

Finally, we have a last rule for recursive terms:

t[rec x. t/x]→ c

rec x. t→ c
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To evaluate the canonical form of rec x. t we first plug into t the recursive
definition itself in place of every occurrence of x and then compute the canonical
form.

Example 7.6. Let us consider the term t def
= λx. 0+x. Clearly the term t is closed and

typable, with t : int→ int. It is already in canonical form and we have in fact

t→ c ↖c=λx. 0+x �

Example 7.7. Let us consider the term t def
= rec x. 0+ x. Clearly the term t is closed

and typable, with t : int. We show that the term has no canonical form, in fact

t→ c ↖ (0+ x)[t/x]→ c

= 0+ t→ c

↖c=c1+c2
0→ c1, t→ c2

↖c1=0 t→ c2

↖ ·· ·

Let us see an example which illustrates how rules are used to evaluate a function
application.

Example 7.8 (Factorial). Let us consider the well-formed factorial function seen in
Example 7.1:

fact def
= rec f . λx. if x then 1 else x× ( f (x−1))

It is immediate to see that fact is closed and we know it has type int→ int. So we
can calculate its canonical form by using the last rule seen and the axiom for terms
in canonical form:

λx. if x then 1 else x× (fact(x−1))→ λx. if x then 1 else x× (fact(x−1))

fact→ λx. if x then 1 else x× (fact(x−1))

We can apply this function to a specific value and calculate the canonical form of the
result. For example, we see what is the canonical form c of the (closed and typable)
term (fact 2) : int
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(fact 2)→ c ↖ fact→ λx′. t ′, t ′[2/x′ ]→ c

↖ λx. if x then 1 else x× (fact(x−1))→ λx′. t ′,

t ′[2/x′ ]→ c

↖x′=x, t ′=if x then 1 else x×fact(x−1) if 2 then 1 else 2× (fact(2−1))→ c

↖∗ 2× (fact(2−1))→ c

↖c=c1×c2
2→ c1, (fact(2−1))→ c2

↖∗c1=2 fact→ λx′′. t ′′, t ′′[2−1/x′′ ]→ c2

note that 2−1 is not evaluated

↖x′′=x, t ′′=if x then 1 else x×fact(x−1) if (2−1) then 1
else (2−1)× (fact((2−1)−1))→ c2

↖ 2−1→ n, n 6= 0,
(2−1)× fact((2−1)−1)→ c2

↖n=n1−n2
2→ n1, 1→ n2, n1−n2 6= 0,
(2−1)× fact((2−1)−1)→ c2

↖∗n1=2, n2=1 (2−1)× fact((2−1)−1)→ c2

↖∗c2=c3×c4
2−1→ c3, fact((2−1)−1)→ c4

↖∗c3=1 fact((2−1)−1)→ c4

↖∗ if (2−1)−1 then 1 else
((2−1)−1)× (fact(((2−1)−1)−1))→ c4

↖ (2−1)−1→ 0, 1→ c4

↖∗c4=1 �

So we have
c = c1×c2 = 2×(c3×c4) = 2×(1×1) = 2

Example 7.9 (Lazy vs eager evaluation). The aim of this example is to illustrate the
difference between lazy and eager semantics. Let us consider the term

t def
= ((λx : int. 3)(rec y : int. y)) : int

also written more concisely as

t def
= (λx. 3)rec y. y

assuming x̂ = ŷ = int. It consists of the constant function λx. 3 applied to a diverging
term rec y. y (i.e., a term with no canonical form).

• Lazy evaluation
Lazy evaluation evaluates a parameter only if needed: if a parameter is never used
in a function or in a specific instance of a function it will never be evaluated. Let
us show our example:
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((λx. 3)rec y. y)→ c ↖ λx. 3→ λx. t, t[rec y. y/x]→ c

↖t=3 3[rec y. y/x]→ c

↖c=3 �

So although the argument rec y. y has no canonical form the application can be
evaluated.

• Eager evaluation
On the contrary in the eager semantics this term has no canonical form since
the parameter must be evaluated before the application, leading to a diverging
computation:

((λx. 3)rec y. y)→ c ↖ λx. 3→ λx. t, rec y. y→ c1, t[c1/x]→ c

↖t=3 rec y. y→ c1, 3[c1/x]→ c

↖ rec y. y→ c1, 3[c1/x]→ c

↖ . . .

So the evaluation does not terminate.

However if the parameter of a function is used n times, the parameter will be evaluated
n times (at most) in the lazy semantics and only once in the eager case.

We conclude this chapter by presenting a theorem that guarantees that

1. if a term can be reduced to a canonical form then it is unique (determinacy);
2. the evaluation of the canonical form preserves the type assignments (type preser-

vation).

Theorem 7.2. Let t be a closed and typable term.

1. For any canonical forms c,c′, if t→ c and t→ c′ then c = c′.
2. For any canonical form c and type τ , if t→ c and t : τ then c : τ .

Proof. Property 1 is proved by rule induction, taking the predicate

P(t→ c) def
= ∀c′. t→ c′⇒ c = c′

We show only the case of the application rule; the remainder of the proof of the
theorem, including the proof of Property 2, is left as an exercise (see Problem 7.11).
We have the rule

t1→ λx. t ′1 t ′1[
t0/x]→ c

(t1 t0)→ c

We assume the inductive hypotheses

• P(t1→ λx. t ′1)
def
= ∀c′. t1→ c′⇒ λx. t ′1 = c′

• P(t ′1[
t0/x]→ c) def

= ∀c′. t ′1[
t0/x]→ c′⇒ c = c′
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We want to prove

P((t1 t0)→ c) def
= ∀c′. (t1 t0)→ c′⇒ c = c′

As usual, we assume the premise of the implication:

(t1 t0)→ c′

From it, by goal reduction

(t1 t0)→ c′ ↖ t1→ λx′. t ′′1 , t ′′1 [
t0/x′ ]→ c′

Then we have by the first inductive hypothesis

λx. t ′1 = λx′. t ′′1

i.e., x = x′ and t ′1 = t ′′1 . Then t ′′1 [
t0/x′ ] = t ′1[

t0/x] and by the second inductive hypothesis
we have c = c′. ut

Problems

7.1. Let x,y,w : int, and f : int→ (int→ int). Consider the HOFL term

t def
= rec f . λx. if x then (λy. (y+w)) else ( f w)

1. Compute the term t[(( f x) y)/w].
2. Compute the term t[(( f x) y)/x].

Hint: The exercise is about practice with capture-avoiding substitutions. You are
allowed to introduce additional (typed) variables if needed.

7.2. Is it possible to assign a type to the HOFL pre-term below? If yes, compute its
principal type.

rec f . λx. if snd(x) then 1 else f ( fst(x) , (fst(x) snd(x)))

7.3. A list of positive numbers is defined by the following syntax, where n ∈N,n > 0:

L ::= (n,0) | (n,L)

For instance the list with 3 followed by 5 is represented by the term (3,(5,0)).

1. Define a HOFL term t (closed and typable) such that the application (t L) to a list
L of three elements returns the last element of the list.

2. Is it possible to find a closed and typable HOFL term which returns the last
element of a generic list?
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7.4. Given the two HOFL terms

t1
def
= λx. λy. x+3 t2

def
= λ z. fst(z)+3

1. Compute their types.
2. Prove that, given the canonical form c : τ , the two terms

((t1 1) c) and (t2 (1,c))

yield the same canonical form.

7.5. Consider the HOFL term

map def
= λ f . λx. (( f fst(x)),( f snd(x)))

Show that map is a typable term and give its principal type. Then, compute the
canonical form of the term

((map (λx. 2× x)) (1,2))

7.6. Determine the type of the HOFL term

t def
= rec x. ((λy. if y then 0 else 0) x).

Then compute its operational semantics.

7.7. Recall the definition of binomial coefficients
(

n
k

)
from Problem 4.13:

(
n
0

)
def
= 1

(
n
n

)
def
= 1

(
n+1
k+1

)
def
=

(
n
k

)
+

(
n

k+1

)
.

where n,k ∈ N and 0≤ k ≤ n. Consider the corresponding HOFL program:

t def
= rec f . λn. λk. if k then 1

else if n− k then 1
else (( f (n−1)) k)+(( f (n−1)) (k−1)).

Compute its type and evaluate the canonical form of the term ((t 2) 1).

7.8. Consider the Fibonacci sequence already found in Problem 4.14

F(0) def
= 1 F(1) def

= 1 F(n+2) def
= F(n+1)+F(n)

where n ∈ N.

1. Write a well-formed, closed HOFL term t : int→ int to compute F .
2. Compute the operational semantics of (t 2)
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7.9. Check whether the HOFL pre-term

λx. λy. λ z. if z then (y x) else (x y).

is typable, in which case give its type.

7.10. Consider the HOFL pre-term t = λx. (x x). Prove that it is not typable. Try to
compute anyway the canonical form of the application (t t). Given that any well-
typed term without recursion has a canonical form, argue why the given term is not
typable.

7.11. Complete the proof of Theorem 7.2.

7.12. Suppose we extend HOFL with the inference rule

t1→ 0
t1× t2→ 0

Prove that the property of determinacy

∀t,c1,c2. t→ c1 ∧ t→ c2⇒ c1 = c2

is still valid. What if also the inference rule below is added?

t2→ 0
t1× t2→ 0

7.13. Prove that typable terms are uniquely typed, i.e., that for any pre-term t and
types τ,τ ′, if t : τ and t : τ ′ then τ = τ ′.



Chapter 8
Domain Theory

Order, unity and continuity are human inventions just as truly as
catalogues and encyclopedias. (Bertrand Russell)

Abstract As we have done for IMP, we would like to introduce the denotational
semantics of HOFL, for which we need to develop a proper domain theory that is more
sophisticated than the one presented in Chapter 5. In order to define the denotational
semantics of IMP, we have shown that the semantic domain of commands, for which
we need to apply the fixpoint theorem, has the required properties. The situation
is more complicated for HOFL, because HOFL provides constructors for infinitely
many term types, so there are infinitely many domains to be considered. We will
handle this problem by showing, using structural induction, that the type constructors
of HOFL correspond to domains which are equipped with adequate CPO⊥ structures
and that we can define useful continuous functions between them.

8.1 The Flat Domain of Integer Numbers Z⊥

The first domain we introduce is very simple: it consists of all the integer numbers
together with a distinguished bottom element. It relies on a flat order in the sense of
Example 5.5.

Definition 8.1 (Z⊥). We define the CPO with bottom Z⊥ = (Z∪{⊥},v) as follows:

• Z is the set of integer numbers;
• ⊥ is a distinguished bottom element;
• ∀x ∈ Z∪{⊥}. ⊥v x and xv x.

It is immediate to check that Z⊥ is a CPO with bottom, where ⊥ is the bottom
element and each chain has a lub because chains are all finite: they contain either one
or two different elements.

Remark 8.1. Since in this chapter we present several different domains, each coming
with its proper order relation and bottom element, we find it useful to annotate them
with the name of the domain as a subscript to avoid ambiguities. For example, we
can write ⊥Z⊥ to make explicit that we are referring to the bottom element of the
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domain Z⊥. Also note that the subscript ⊥ we attach to the name of the domain Z is
just a tag and it should not be confused with the name of the bottom element itself: it
is the standard way to indicate that the domain Z is enriched with a bottom element
(e.g., we could have used a different notation such as Z to the same purpose).

8.2 Cartesian Product of Two Domains

Given two CPO⊥s we can combine them to obtain another CPO⊥ whose elements
are pairs formed with one element from each CPO⊥.

Definition 8.2 (Cartesian product domain). Let

D = (D,vD) E = (E,vE)

be two CPO⊥s. Now we define their cartesian product domain

D×E = (D×E,vD×E)

1. whose elements are pairs of elements from D and E; and
2. whose order vD×E is defined as follows:1

∀d0,d1 ∈ D, ∀e0,e1 ∈ E. (d0,e0)vD×E (d1,e1) ⇔ d0 vD d1∧ e0 vE e1

Proposition 8.1. (D×E,vD×E) is a partial order with bottom.

Proof. We need to show that the relation vD×E is reflexive, antisymmetric and
transitive:

reflexivity: since vD and vE are reflexive we have ∀e ∈ E. evE e and ∀d ∈
D. d vD d so by definition of vD×E we have

∀d ∈ D ∀e ∈ E. (d,e)vD×E (d,e).

antisymmetry: let us assume (d0,e0)vD×E (d1,e1) and (d1,e1)vD×E (d0,e0) so
by definition of vD×E we have d0 vD d1 (using the first relation)
and d1 vD d0 (by using the second relation) so it must be that
d0 = d1 and similarly e0 = e1, hence (d0,e0) = (d1,e1).

transitivity: let us assume (d0,e0)vD×E (d1,e1) and (d1,e1)vD×E (d2,e2). By
definition of vD×E we have d0 vD d1, d1 vD d2, e0 vE e1 and
e1 vE e2. By transitivity of vD and vE we have d0 vD d2 and
e0 vE e2. By definition of vD×E we get (d0,e0)vD×E (d2,e2).

Finally, we show that there is a bottom element. Let ⊥D×E = (⊥D,⊥E). In fact
∀d ∈ D,e ∈ E. ⊥D v d∧⊥E v e, thus (⊥D,⊥E)vD×E (d,e). ut

1 Note that the order is different from the lexicographic one considered in Example 4.9.
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It remains to show the completeness of D×E .

Theorem 8.1 (Completeness of D×E ). The PO D×E defined above is complete.

Proof. We prove that for each chain {(di,ei)}i∈N it holds that

⊔
i∈N

(di,ei) =

(⊔
i∈N

di,
⊔
i∈N

ei

)

Obviously (
⊔

i∈N di,
⊔

i∈N ei) is an upper bound, indeed for each j ∈ N we have
d j vD

⊔
i∈N di and e j vE

⊔
i∈N ei so by definition ofvD×E it holds that (d j,e j)vD×E

(
⊔

i∈N di,
⊔

i∈N ei).
Moreover (

⊔
i∈N di,

⊔
i∈N ei) is also the least upper bound. Indeed, let (d,e) be an

upper bound of {(di,ei)}i∈N; since
⊔

i∈N di is the lub of {di}i∈N we have
⊔

i∈N di vD
d, furthermore we have that

⊔
i∈N ei is the lub of {ei}i∈N so

⊔
i∈N ei vE e. So by

definition of vD×E we have (
⊔

i∈N di,
⊔

i∈N ei) vD×E (d,e). Thus (
⊔

i∈N di,
⊔

i∈N ei)
is the least upper bound. ut

We can now define suitable projection operators over D×E .

Definition 8.3 (Projection operators π1 and π2 ). Let (d,e) ∈ D×E be a pair. We
define the left and right projection functions π1 : D×E→ D and π2 : D×E→ E as
follows:

π1 ((d,e))
def
= d and π2 ((d,e))

def
= e.

Recall that in order to use a function in domain theory we have to show that it
is continuous; this ensures that the function respects the domain structure (i.e., the
function preserves the order and limits) and so we can calculate its fixpoints to solve
recursive equations. So we have to prove that each function which we use on D ×E
is continuous. The proof that projections are monotone is immediate and left as an
exercise (see Problem 8.1).

Theorem 8.2 (Continuity of π1 and π2). Let π1 and π2 be the projection functions
in Definition 8.3 and let {(di,ei)}i∈N be a chain of elements in D×E , then

π1

(⊔
i∈N

(di,ei)

)
=
⊔
i∈N

π1 ((di,ei)) π2

(⊔
i∈N

(di,ei)

)
=
⊔
i∈N

π2 ((di,ei))

Proof. Let us prove the first statement:

π1

(⊔
i∈N

(di,ei)

)
= π1

((⊔
i∈N

di,
⊔
i∈N

ei

))
(by definition of limit in D×E)

=
⊔
i∈N

di (by definition of projection)

=
⊔
i∈N

π1 ((di,ei)) (by definition of projection)

For the second statement the proof is completely analogous. ut
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8.3 Functional Domains

Let (D,vD) and (E,vE) be two CPOs. In the following we denote by D→ E def
=

{ f | f : D→ E} the set of all functions from D to E (where the order relations are not
important), while we denote by [D→ E]⊆D→ E the set of all continuous functions
from D to E (i.e., [D→ E] contains just the functions that preserve order and limits).
As for cartesian product, we can define a suitable order on the set [D→ E] to get a
CPO⊥. Note that as usual we require the continuity of the functions to preserve the
applicability of fixpoint theory.

Definition 8.4 (Continuous functions domain). Let us consider the CPO⊥s

D = (D,vD) E = (E,vE)

We define an order on the set of continuous functions from D to E as follows:

[D → E ] =
(
[D→ E] ,v[D→E]

)
where

1. [D→ E] = { f | f : D→ E, f is continuous}
2. f v[D→E] g⇔∀d ∈ D. f (d)vE g(d)

We leave as an exercise the proof that [D → E ] is a PO with bottom, namely that
the relation v[D→E] is reflexive, antisymmetric and transitive and that the function
⊥[D→E] : D→ E defined by letting, for any d ∈ D

⊥[D→E](d)
def
= ⊥E

is continuous and that it is also the bottom element of [D → E ] (see Problem 8.2).
We show that the PO [D → E ] is complete. In order to simplify the proof we first

introduce the following lemmas.

Lemma 8.1 (Switch lemma). Let (E,vE) be a CPO whose elements are of the form
en,m with n,m ∈ N. If vE is such that

en,m vE en′,m′ if n≤ n′ and m≤ m′

then, it holds

⊔
n,m∈N

en,m =
⊔

n∈N

(⊔
m∈N

en,m

)
=
⊔

m∈N

(⊔
n∈N

en,m

)
=
⊔
k∈N

ek,k

Proof. The relation between the elements of E can be summarised as follows:
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...
...

...
... . .

.

v v v v

en,0 v en,1 v en,2 v ·· · v en,m v ·· ·

v v v v

...
...

... . .
. ...

v v v v

e2,0 v e2,1 v e2,2 v ·· · v e2,m v ·· ·
v v v v

e1,0 v e1,1 v e1,2 v ·· · v e1,m v ·· ·

v v v v

e0,0 v e0,1 v e0,2 v ·· · v e0,m v ·· ·

We show that all the following sets have the same upper bounds:

{en,m}n,m∈N

{⊔
m∈N

en,m

}
n∈N

{⊔
n∈N

en,m

}
m∈N

{ek,k}k∈N

• Let us consider the first two sets. For any n ∈ N, let en =
⊔

j∈N en, j. This amounts
to considering each row of the above diagram and computing the least upper
bound for the elements in the same row. Clearly, en1 v en2 when n1 ≤ n2 because
for any j ∈ N an upper bound of en2, j is also an upper bound of en1, j.

...
...

...
...

...

v v v v v

en,0 v en,1 v en,2 v ·· · v en,m v ·· · v en =
⊔

m∈N en,m

v v v v v

...
...

...
...

...

v v v v v

e2,0 v e2,1 v e2,2 v ·· · v e2,m v ·· · v e2 =
⊔

m∈N e2,m

v v v v v

e1,0 v e1,1 v e1,2 v ·· · v e2,m v ·· · v e1 =
⊔

m∈N e1,m

v v v v v

e0,0 v e0,1 v e0,2 v ·· · v e2,m v ·· · v e0 =
⊔

m∈N e0,m

Let e be an upper bound of {ei}i∈N. We want to show that e is an upper bound for
{en,m}n,m∈N. Take any n,m ∈ N. Then

en,m v
⊔
j∈N

en, j = en v e

since en,m is an element of the chain {en, j} j∈N whose limit is en =
⊔

j∈N en, j. Thus
e is an upper bound for {en,m}n,m∈N.
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Vice versa, let e be an upper bound of {ei, j}i, j∈N and consider en =
⊔

m∈N en,m
for some n. Since {en,m}m∈N ⊆ {ei, j}i, j∈N, obviously e is an upper bound for
{en,m}m∈N and therefore en v e, because en is the lub of {en,m}m∈N.

• The correspondence between the sets of upper bounds of {en,m}n,m∈N and
{⊔n∈N en,m}m∈N can be proved analogously.

• Finally, let us consider the sets {en,m}n,m∈N and {ek,k}k∈N and show that they have
the same set of upper bounds.
Take any n,m ∈ N and let k = max{n,m}. We have

en,m v en,k v ek,k

thus any upper bound of {ek,k}k∈N is also an upper bound of {en,m}n,m∈N.
Vice versa, it is immediate to check that {ek,k}k∈N is a subset of {en,m}n,m∈N so
any upper bound of {en,m}n,m∈N is also an upper bound of {ek,k}k∈N.

We conclude by noting that the set of upper bounds {en,m}n,m∈N has a least
element. In fact, {⊔m∈N en,m}n∈N is a chain, and it has a lub because E is a CPO. ut

Lemma 8.2. Let { fn}n∈N be a chain of functions2 in D → E . Then the lub
⊔

n∈N fn
exists and it is defined as (⊔

n∈N
fn

)
(d) =

⊔
n∈N

( fn(d))

Proof. The function
h def

= λd.
⊔

n∈N
( fn(d))

is clearly an upper bound for { fn}n∈N since for every k ∈ N and d ∈ D we have
fk(d)vE

⊔
n∈N fn(d).

The function h is also the lub of { fn}n∈N. In fact, given any other upper bound g,
i.e., such that fn vD→E g for any n ∈ N, we have that for any d ∈ D the element g(d)
is an upper bound of the chain { fn(d)}n∈N and therefore

⊔
n∈N( fn(d))vE g(d). ut

Lemma 8.3. Let { fn}n∈N be a chain of continuous functions in [D → E ] and let
{dn}n∈N be a chain of D . Then, the function

h def
= λd.

⊔
n∈N

( fn(d))

is continuous, namely

h

(⊔
m∈N

dm

)
=
⊔

m∈N
h(dm)

Furthermore, h is the lub of { fn}n∈N not only in D → E as stated by Lemma 8.2, but
also in [D → E ].
2 Note that the fn are not necessarily continuous, because we select D → E and not [D → E ].
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Proof.

h

(⊔
m∈N

dm

)
=
⊔

n∈N

(
fn

(⊔
m∈N

dm

))
(by definition of h)

=
⊔

n∈N

(⊔
m∈N

( fn (dm))

)
(by continuity of fn)

=
⊔

m∈N

(⊔
n∈N

( fn (dm))

)
(by Switch Lemma 8.1)

=
⊔

m∈N
h(dm) (by definition of h)

Note that, in the previous passages, the premises for applying the Switch Lemma 8.1
hold because the elements { fn(dm)}n,m∈N are in the CPO E and they satisfy
fn(dm) vE fn′(dm′) whenever n ≤ n′ and m ≤ m′ as fn(dm) vE fn(dm′) by mono-
tonicity of fn (because dm vD dm′) and fn(dm′) vE fn′(dm′) because fn v[D→E] fn′ .
The upper bounds of { fn}n∈N in the PO D→ E are a larger set than those in [D → E ],
thus if h is the lub in D → E , it is also the lub in [D → E ]. ut

Theorem 8.3 ([D → E ] is a CPO⊥). The PO [D → E ] is a CPO⊥.

Proof. The statement follows immediately from the previous lemmas. ut

8.4 Lifting

In IMP we introduced a lifting operator (see Definition 6.9) on functions f : Σ→Σ⊥to
derive a function f ∗ : Σ⊥→ Σ⊥ defined over the lifted domain Σ⊥, and thus able to
handle the argument ⊥Σ⊥ . In the semantics of HOFL we need the same operator in a
more general fashion: we need to apply the lifting operator to any domain, not just Σ .

Definition 8.5 (Lifted domain). Let D = (D,vD) be a CPO and let⊥ be an element
not in D. We define the lifted domain D⊥ = (D⊥,vD⊥) as follows:

• D⊥
def
= {⊥}]D = {(0,⊥)}∪ ({1}×D)

• ⊥D⊥
def
= (0,⊥)

• ∀x ∈ D⊥. ⊥D⊥ vD⊥ x
• ∀d1,d2 ∈ D. d1 vD d2⇒ (1,d1)vD⊥ (1,d2)

We leave it as an exercise to show that D⊥ is a CPO⊥ (see Problem 8.3).
We define a lifting function b·c : D→ D⊥ by letting, for any d ∈ D

bdc def
= (1,d)
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As it was the case for Σ in the IMP semantics, when we add a bottom element
to a domain D we would like to extend the continuous functions in [D→ E] to
continuous functions in [D⊥→ E]. The function defining the extension should itself
be continuous.

Definition 8.6 (Lifting). Let D be a CPO and let E be a CPO⊥. We define the lifting
operator (·)∗ : [D→ E]→ [D⊥→ E] as follows:

∀ f ∈ [D→ E] . f ∗(x) def
=

{
⊥E if x =⊥D⊥
f (d) if x = bdc for some d ∈ D

We need to prove that the definition is well given and that the lifting operator is
continuous.

Theorem 8.4. Let D ,E be two CPOs.

1. If f : D→ E is continuous, then f ∗ is continuous.
2. The operator (·)∗ is continuous.

Proof. We prove the two statements separately.

1. We need to prove that if f ∈ [D→ E], then f ∗ ∈ [D⊥→ E]. Let {xn}n∈N be a
chain in D⊥. We have to prove f ∗(

⊔
n∈N xn) =

⊔
n∈N f ∗(xn).

If ∀n ∈ N. xn =⊥D⊥ , then this is obvious.
Otherwise, for some k ∈ N there must exist a set of elements {dn+k}n∈N in D
such that for all m ≥ k we have xm = bdmc and also

⊔
n∈N xn =

⊔
n∈N xn+k =

b⊔n∈N dn+kc (by prefix independence of the limit, Lemma 5.1). Then

f ∗
(⊔

n∈N
xn

)
= f ∗

(⌊⊔
n∈N

dn+k

⌋)
by the above argument

= f

(⊔
n∈N

dn+k

)
by definition of lifting

=
⊔

n∈N
f (dn+k) by continuity of f

=
⊔

n∈N
f ∗(bdn+kc) by definition of lifting

=
⊔

n∈N
f ∗(xn+k) by definition of xn+k

=
⊔

n∈N
f ∗(xn) by Lemma 5.1

2. We leave the proof that (·)∗ is monotone as an exercise (see Problem 8.4).
Let { fi}i∈N be a chain of functions in [D → E ]. We will prove that for all x ∈ D⊥(⊔

i∈N
fi

)∗
(x) =

(⊔
i∈N

f ∗i

)
(x)
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if x =⊥D⊥ both sides of the equation simplify to ⊥E . So let us assume x = bdc
for some d ∈ D. We have(⊔

i∈N
fi

)∗
(bdc) =

(⊔
i∈N

fi

)
(d) by definition of lifting

=
⊔
i∈N

( fi(d)) by def. of lub in a functional domain

=
⊔
i∈N

( f ∗i (bdc)) by definition of lifting

=

(⊔
i∈N

f ∗i

)
(bdc) by def. of lub in a functional domain

ut

8.5 Continuity Theorems

In this section we show some theorems which allow us to prove the continuity of
some functions. We start by proving that the composition of two continuous functions
is continuous.

Theorem 8.5 (Continuity of composition). Let f ∈ [D→E] and g∈ [E→F ]. Their
composition

f ;g = g◦ f def
= λd. g( f (d)) : D→ F

is a continuous function, i.e., g◦ f ∈ [D→ F ].

Proof. The statement is just a rephrasing of Theorem 5.5. ut
Now we consider a function whose outcome is a pair of values. So the function

has a single CPO as domain but it returns a result over a product of CPOs:

f : D→ E1×E2

For this type of function we introduce a theorem which allows us to prove the
continuity of f in a convenient way. We will consider f as the pairing of two simpler
functions g1 : D→ E1 and g2 : D→ E2, such that f (d) = (g1(d),g2(d)) for any
d ∈ D. Then we can prove the continuity of f from the continuity of g1 and g2 (and
vice versa).

Theorem 8.6. Let f : D→ E1×E2 be a function over CPOs and let

g1
def
= f ;π1 : D→ E1 g2

def
= f ;π2 : D→ E2

where f ;πi = λx. πi( f (x)) is the composition of f and πi for i = 1,2. Then f is
continuous if and only if g1 and g2 are continuous.
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Proof. We prove the two implications separately.

⇒) Since f is continuous, by Theorem 8.5 (continuity of composition) and Theo-
rem 8.2 (continuity of projections), also g1 and g2 are continuous.

⇐) Note that ∀d ∈ D. f (d) = (g1(d),g2(d)). We assume the continuity of g1 and
g2 and we want to prove that f is continuous. Let {di}i∈N be a chain in D. We
want to prove f (

⊔
i∈N di) =

⊔
i∈N f (di). So we have

f

(⊔
i∈N

di

)
=

(
g1

(⊔
i∈N

di

)
,g2

(⊔
i∈N

di

))
(by definition of g1,g2)

=

(⊔
i∈N

g1(di),
⊔
i∈N

g2(di)

)
(by continuity of g1 and g2)

=
⊔
i∈N

(g1(di),g2(di)) (by definition of lub of pairs)

=
⊔
i∈N

f (di) (by definition of g1,g2)

ut
Now let us consider the case of a function f : D1×D2→ E over CPOs which

takes a pair of arguments in D1 and D2 and returns an element of E. The following
theorem allows us to study the continuity of f by analysing each parameter separately.

Theorem 8.7. Let f : D1×D2→ E be a function over CPOs. Then f is continuous
if and only if all the functions in the following two classes are continuous:

1. ∀d′ ∈ D1. fd′ : D2→ E is defined as fd′
def
= λy. f (d′,y);

2. ∀d′′ ∈ D2. fd′′ : D1→ E is defined as fd′′
def
= λx. f (x,d′′).

Proof. We prove the two implications separately:

⇒) If f is continuous then for all d′ ∈ D1,d′′ ∈ D2 the functions fd′ and fd′′ are
continuous, since we are considering only certain chains (where one element of
the pair is fixed). For example, let us fix d′ ∈ D1 and consider a chain {d′′i }i∈N
in D2. Then we prove that fd′ is continuous as follows:

fd′

(⊔
i∈N

d′′i

)
= f

(
d′,
⊔
i∈N

d′′i

)
(by definition of fd′ )

= f

(⊔
i∈N

(d′,d′′i )

)
(by definition of lub)

=
⊔
i∈N

f (d′,d′′i ) (by continuity of f )

=
⊔
i∈N

fd′(d
′′
i ) (by definition of fd′ )
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Similarly, if we fix d′′ ∈ D2 and take a chain {d′i}i∈N in D1 we have
fd′′(

⊔
i∈N d′i) =

⊔
i∈N fd′′(d′i).

⇐) In the opposite direction, assume that fd′ and fd′′are continuous for all elements
d′ ∈ D1 and d′′ ∈ D2. We want to prove that f is continuous. Take a chain
{(d′k,d′′k )}k∈N. By definition of lub on pairs, we have

⊔
k∈N

(d′k,d
′′
k ) =

(⊔
i∈N

d′i ,
⊔
j∈N

d′′j

)

Let d′′ def
=
⊔

j∈N d′′j . It follows that

f

(⊔
k∈N

(d′k,d
′′
k )

)
= f

(⊔
i∈N

d′i ,
⊔
j∈N

d′′j

)
(by definition of lub on pairs)

= f

(⊔
i∈N

d′i ,d
′′
)

(by definition of d′′)

= fd′′

(⊔
i∈N

d′i

)
(by definition of fd′′)

=
⊔
i∈N

fd′′(d
′
i) (by continuity of fd′′ )

=
⊔
i∈N

f (d′i ,d
′′) (by definition of fd′′ )

=
⊔
i∈N

fd′i
(d′′) (by definition of fd′i

)

=
⊔
i∈N

fd′i

(⊔
j∈N

d′′j

)
(by definition of d′′)

=
⊔
i∈N

⊔
j∈N

fd′i
(d′′j ) (by continuity of fd′i

)

=
⊔
i∈N

⊔
j∈N

f (d′i ,d
′′
j ) (by definition of fd′i

)

=
⊔
k∈N

f (d′k,d
′′
k ) (by Lemma 8.1 (switch lemma))

ut
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8.6 Apply, Curry and Fix

As we have done for IMP we will use the lambda notation as a meta-language for the
denotational semantics of HOFL. In Section 8.2 we have already defined two new
continuous functions for our meta-language (π1 and π2). In this section we introduce
some additional functions that will form the kernel of our meta-language.

Definition 8.7 (Apply). Let D and E be two CPOs. We define a function apply :
[D→ E]×D→ E as follows:

apply( f ,d) def
= f (d)

The function apply represents the application of a function in our meta-language: it
takes a continuous function f : D→ E and an element d ∈D and then returns f (d) as
a result. We leave it as an exercise to prove that apply is monotone (see Problem 8.5).
We prove that it is also continuous.

Theorem 8.8 (Continuity of apply). Let apply : [D→ E]×D→ E be the function
defined above and let {( fn,dn)}n∈N be a chain in the CPO⊥ [D → E ]×D . Then

apply

(⊔
n∈N

( fn,dn)

)
=
⊔

n∈N
apply( fn,dn)

Proof. By Theorem 8.7 we can prove continuity on each parameter separately.

• Let us fix d ∈ D and take a chain { fn}n∈N in [D→ E]. We have

apply

((⊔
n∈N

fn

)
,d

)
=

(⊔
n∈N

fn

)
(d) (by definition)

=
⊔

n∈N
( fn(d)) (by definition of lub of functions)

=
⊔

n∈N
apply( fn,d) (by definition)

• Now we fix f ∈ [D→ E] and take a chain {dn}n∈N in D. We have

apply

(
f ,
⊔

n∈N
dn

)
= f

(⊔
n∈N

dn

)
(by definition)

=
⊔

n∈N
f (dn) (by continuity of f )

=
⊔

n∈N
apply( f ,dn) (by definition)

So apply is a continuous function. ut
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Currying is the name of a technique for transforming a function that takes a pair
(or, more generally, a tuple) of arguments into a function that takes each argument
separately but computes the same result.

Definition 8.8 (Curry and un-curry). We define the function

curry : (D×E→ F)→ (D→ E→ F)

by letting, for any g : D×E→ F , d ∈ D and e ∈ E

curry g d e def
= g(d,e)

and we define the function

un-curry : (D→ E→ F)→ (D×E→ F)

by letting, for any h : D→ E→ F , d ∈ D and e ∈ E

un-curry h (d,e) def
= h d e

Theorem 8.9 (Continuity of curry). Let D,E,F be CPOs and g : D×E→ F be a
continuous function. Then (curryg) : D→ (E→ F) is a continuous function, namely
given any chain {di}i∈N in D

(curry g)

(⊔
i∈N

di

)
=
⊔
i∈N

(curry g)(di).

Proof. Let us note that since g is continuous, by Theorem 8.7, g is continuous
separately on each argument. Then let us take e ∈ E. We have

(curry g)

(⊔
i∈N

di

)
(e) = g

((⊔
i∈N

di

)
,e

)
(by definition of curry g)

=
⊔
i∈N

g(di,e) (by continuity of g)

=
⊔
i∈N

((curry g)(di)(e)) (by definition of curry g)

ut

To define the denotational semantics of recursive definitions we need to provide a
fixpoint operator. So it seems useful to introduce fix in our meta-language.

Definition 8.9 (Fix). Let D be a CPO⊥. We define fix : [D→ D]→ D as

fix def
=
⊔
i∈N

λ f . f i(⊥D)
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Note that, since {λ f . f i(⊥D)}i∈N is a chain of functions and [D→ D]→ D is
complete, we are guaranteed that the lub

⊔
i∈Nλ f . f i(⊥D) exists.

Theorem 8.10 (Continuity of fix). The function fix : [D→ D]→ D is continuous,
namely fix ∈ [[D→ D]→ D].

Proof. We know that [[D→ D]→ D] is complete, thus if for all i ∈ N the function
λ f . f i(⊥D) is continuous, then fix =

⊔
i∈Nλ f . f i(⊥D) is also continuous. We prove

that ∀i ∈ N. λ f . f i(⊥D) is continuous by mathematical induction on i.

Base case: λ f . f 0(⊥D) = λ f .⊥D is a constant, and thus continuous, function.

Inductive case: Let us assume that g def
= λ f . f i(⊥D) is continuous, i.e., that given

a chain { fn}n∈N in [D→ D] we have g(
⊔

n∈N fn) =
⊔

n∈N g( fn),

and let us prove that h def
= λ f . f i+1(⊥D) is continuous, namely that

h(
⊔

n∈N fn) =
⊔

n∈N h( fn). In fact we have

h

(⊔
n∈N

fn

)
=

(⊔
n∈N

fn

)i+1

(⊥D) (by def. of h)

=

(⊔
n∈N

fn

)(⊔
n∈N

fn

)i

(⊥D)

 (by def. of (·)i+1)

=

(⊔
n∈N

fn

)(
g

(⊔
n∈N

fn

))
(by def. of g)

=

(⊔
n∈N

fn

)(⊔
n∈N

g( fn)

)
(by ind. hyp.)

=

(⊔
n∈N

fn

)(⊔
n∈N

f i
n(⊥D)

)
(by def of g)

=
⊔

n∈N

(
fn

(⊔
m∈N

f i
m(⊥D)

))
(by def. of lub)

=
⊔

n∈N

⊔
m∈N

fn
(

f i
m(⊥D)

)
(by cont. of fn)

=
⊔
k∈N

fk
(

f i
k(⊥D)

)
(by Lemma 8.1)

=
⊔
k∈N

f i+1
k (⊥D) (by def. of (·)i+1)

=
⊔

n∈N
h( fn) (by def. of h)

ut
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Finally we introduce the let operator, whose role is that of binding a name x to
a de-lifted expression. Note that the continuity of the let operator directly follows
from the continuity of the lifting operator.

Definition 8.10 (Let operator). Let E be a CPO⊥ and λx. e a function in [D→ E].
We define the let operator as follows, where d′ ∈ D⊥:

let x⇐ d′. e def
= (λx. e)

D→E

∗

D⊥→E

(d′

D⊥

)

E

=

{
⊥E if d′ =⊥D⊥
e
[

d/x
]

if d′ = bdc for some d ∈ D

Intuitively, given d′ ∈ D⊥, if d′ = ⊥ then let x⇐ d′. e returns ⊥E , otherwise
it means that d′ = bdc for some d ∈ D and thus it returns e

[
d/x
]
, as if λx. e was

applied to d, i.e., d′ = bdc is de-lifted so that λx. e can be used.

Problems

8.1. Prove that the projection functions in Definition 8.3 are monotone.

8.2. Prove that the domain [D → E ] from Definition 8.4 is a CPO⊥.

8.3. Prove that the lifted domain D⊥ from Definition 8.5 is a CPO⊥.

8.4. Complete the part of the proof of Theorem 8.4 concerned with the monotonicity
of the lifting function (·)∗.

8.5. Prove that the function apply : [D→ E]×D→ E introduced in Definition 8.7 is
monotone.

8.6. Let D be a CPO and f : D→ D be a continuous function. Prove that the set of
fixpoints of f is itself a CPO (under the order inherited from D).

8.7. Let D and E be two CPO⊥s. A function f : D→ E is called strict if f (⊥D) =⊥E .
Prove that the set of strict functions from D to E is a CPO⊥ under the usual order.

8.8. Let D and E be two CPOs. Prove that the following two definitions of the order
between continuous functions f ,g : D→ E are equivalent:

1. f v g ⇔ ∀d ∈ D. f (d)vE g(d)
2. f � g ⇔ ∀d1,d2 ∈ D. (d1 vD d2⇒ f (d1)vE g(d2))

8.9. Let D = (D,vD) and E = (E,vE) be two CPOs. Their sum D +E has

1. The set of elements

{⊥}]D]E = {(0,⊥)}∪ ( {1}× (({0}×D)∪ ({1}×E)) )
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2. The order relation vD+E defined by letting

• (1,(0,d1))vD+E (1,(0,d2)) if d1 vD d2
• (1,(1,e1))vD+E (1,(1,e2)) if e1 vE e2
• ∀x ∈ {⊥}]D]E. (0,⊥)vD+E x

Prove that D +E is a CPO⊥.

8.10. Prove that un-curry is continuous and inverse to curry (see Definition 8.8).



Chapter 9
Denotational Semantics of HOFL

Work out what you want to say before you decide how you want
to say it. (Christopher Strachey’s first law of logical design)

Abstract In this chapter we exploit the domain theory from Chapter 8 to define the
(lazy) denotational semantics of HOFL. For each type τ we introduce a corresponding
domain (Vτ)⊥ which is defined inductively over the structure of τ and such that we
can assign an element of the domain (Vτ)⊥ to each (closed and typable) term t with
type τ . Moreover, we introduce the notion of environment, which assigns meanings
to variables, and can be exploited to define the denotational semantics of (typable)
terms with variables. Interestingly, all constructions we use are continuous, so that
we are able to assign meaning also to any (typable) term that is recursively defined.
We conclude the chapter by showing some important properties of the denotational
semantics; in particular, that it is compositional.

9.1 HOFL Semantic Domains

In order to specify the denotational semantics of a programming language, we have to
define, by structural recursion, an interpretation function from each syntactic domain
to a semantic domain. In IMP there are three syntactic domains, Aexp for arithmetic
expressions, Bexp for boolean expressions and Com for commands. Correspondingly,
we have defined three semantic domains and three interpretation functions (A J·K,
B J·K and C J·K). HOFL has a sole syntactic domain (i.e., the set of well-formed
terms t) and thus we have only one interpretation function, written J·K. However,
since HOFL terms are typed, the interpretation function is parametric w.r.t. the type
τ of t and we have one semantic domain Vτ for each type τ . Actually, we distinguish
between Vτ , where we find the meanings of the terms of type τ with canonical forms,
and (Vτ)⊥, where the additional element ⊥(Vτ )⊥ assigns a meaning to all the terms of
type τ without a canonical form. Moreover, we will need to handle terms with free
variables, as, e.g., when defining the denotational semantics of λx. t in terms of the
denotational semantics of t (with x possibly in fv(t)). This was not the case for the
operational semantics of HOFL, where only closed terms are considered. As terms
may contain free variables, we pass to the interpretation function an environment

© Springer International Publishing Switzerland 2017
R. Bruni and U. Montanari, Models of Computation, Texts in Theoretical
Computer Science. An EATCS Series, DOI 10.1007/978-3-319-42900-7_9

191



192 9 Denotational Semantics of HOFL

ρ ∈ Env def
= Var→

⋃
τ

(Vτ)⊥

which assigns meaning to variables. For consistency reasons, any environment ρ that
we consider must satisfy the condition ρ(x) ∈ (Vτ)⊥ whenever x : τ . Thus, we have

Jt : τK : Env→ (Vτ)⊥

The actual semantic domains Vτ and (Vτ)⊥ are defined by structural recursion on
the syntax of types:

Vint
def
= Z (Vint)⊥

def
= Z⊥

Vτ1∗τ2
def
= (Vτ1)⊥× (Vτ2)⊥ (Vτ1∗τ2)⊥

def
= ((Vτ1)⊥× (Vτ2)⊥)⊥

Vτ1→τ2
def
= [(Vτ1)⊥→ (Vτ2)⊥] (Vτ1→τ2)⊥

def
= [(Vτ1)⊥→ (Vτ2)⊥]⊥

Notice that the recursive definition above takes advantage of the domain constructors
we have defined in Chapter 8. While the lifiting Z⊥ of the integer numbers Z is
strictly necessary, liftings on cartesian pairs and on continuous functions are actually
optional, since cartesian products and functional domains are already CPO⊥s. We
will discuss the motivation of our choice at the end of Chapter 10.

9.2 HOFL Interpretation Function

Now we are ready to define the interpretation function, by structural recursion.
We briefly comment on each definition and show that the clauses of the structural
recursion are typed correctly.

9.2.1 Constants

We define the meaning of a constant as the obvious value on the lifted domain:

JnKρ
def
= bnc

At the level of types, we have

J n
int

Kρ

(Vint )⊥=Z⊥

= bn
Z
c

Z⊥
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9.2.2 Variables

The meaning of a variable is defined by its value in the given environment ρ:

JxKρ
def
= ρ(x)

It is obvious that the typing is respected (under the assumption that ρ(x) ∈ (Vτ)⊥
whenever x : τ):

Jx
τ

Kρ

(Vτ )⊥

= ρ(x
τ

)

(Vτ )⊥

9.2.3 Arithmetic Operators

We give the generic semantics of a binary operator op ∈ {+,−,×} as

Jt0 op t1Kρ = Jt0Kρ op⊥ Jt1Kρ

where for any operator op ∈ {+,−,×} in the syntax we have the corresponding
function op : Z×Z→ Z on the integers Z and also the binary function op⊥ on Z⊥
defined as

op⊥ : (Z⊥×Z⊥)→ Z⊥

x1 op⊥ x2 =

{
bn1 op n2c if x1 = bn1c and x2 = bn2c for some n1,n2 ∈ Z
⊥Z⊥ otherwise

We remark that op⊥ yields ⊥Z⊥ when at least one of the two arguments is ⊥Z⊥ .
At the level of types, we have

J(t0
int

op t1
int

)

int

Kρ

(Vint )⊥=Z⊥

= Jt0
int

Kρ

(Vint )⊥

op⊥
(Z⊥×Z⊥)→Z⊥

Jt1
int

Kρ

(Vint )⊥

(Vint )⊥

9.2.4 Conditional

In order to define the semantics of the conditional expression, we exploit the condi-
tional operator of the meta-language

Condτ : Z⊥× (Vτ)⊥× (Vτ)⊥→ (Vτ)⊥
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defined as

Condτ(v,d0,d1)
def
=


d0 if v = b0c
d1 if ∃n ∈ Z. v = bnc∧n 6= 0
⊥(Vτ )⊥ if v =⊥Z⊥

Note that Condτ is parametric on the type τ . In the following, when τ can be
inferred, we write just Cond. The conditional operator is strict on its first argument
(i.e., it returns ⊥ when the first argument is ⊥) but not on the second and third
arguments.

We can now define the denotational semantics of the conditional operator by
letting

Jif t then t0 else t1Kρ
def
= Cond (JtKρ,Jt0Kρ,Jt1Kρ)

At the level of types, we have

Jif t0
int

then t1
τ

else t2
τ

τ

Kρ

(Vτ )⊥

= Condτ

Z⊥×(Vτ )⊥×(Vτ )⊥→(Vτ )⊥

(Jt0
int

Kρ,

(Vint )⊥

Jt1
τ

Kρ,

(Vτ )⊥

Jt2
τ

Kρ

(Vτ )⊥

)

(Vτ )⊥

9.2.5 Pairing

For the pairing operator we simply let

J(t0, t1)Kρ
def
= b(Jt0Kρ,Jt1Kρ)c

Note that, for t0 : τ0 and t1 : τ1, the pair (Jt0Kρ,Jt1Kρ) is in (Vτ0)⊥×(Vτ1)⊥ and not in
((Vτ0)⊥× (Vτ1)⊥)⊥, thus we apply the lifting. In fact, at the level of type consistency
we have

J(t0
τ0

, t1
τ1

)

τ0∗τ1

Kρ

(Vτ0∗τ1 )⊥

= b(Jt0
τ0

Kρ

(Vτ0 )⊥

, Jt1
τ1

Kρ

(Vτ1 )⊥

)

(Vτ0 )⊥×(Vτ1 )⊥

c

((Vτ0 )⊥×(Vτ1 )⊥)⊥

9.2.6 Projections

We define the projections by using the lifted version of the projections π1 and π2 of
the meta-language:
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Jfst(t)Kρ
def
= let d⇐ JtKρ. π1 d

= π
∗
1 (JtKρ)

Jsnd(t)Kρ
def
= let d⇐ JtKρ. π2 d

= π
∗
2 (JtKρ)

The let operator (see Definition 8.10) allows us to de-lift JtKρ in order to apply
projections π1 and π2. Instead, if JtKρ =⊥ the result is also ⊥.

Again, we check that the type constraints are respected by the definition:

Jfst( t
τ0∗τ1

)

τ0

Kρ

(Vτ0 )⊥

= let d
Vτ0∗τ1

⇐ J t
τ0∗τ1

Kρ

(Vτ0∗τ1 )⊥

. π1

(Vτ0 )⊥×(Vτ1 )⊥→(Vτ0 )⊥

d
Vτ0∗τ1

(Vτ0 )⊥

The case of snd(t : τ0 ∗ τ1) is completely analogous and thus omitted.

9.2.7 Lambda Abstraction

For lambda abstraction we use, of course, the lambda operator of the meta-language:

Jλx. tKρ
def
=
⌊

λd. JtKρ[d/x]
⌋

where we bind x to d for evaluating t.
Note that, as in the case of pairing, we need to apply the lifting, because

λd. JtKρ[d/x] is an element of Vτ0→τ1 = [(Vτ0)⊥→ (Vτ1)⊥] and not of (Vτ0→τ1)⊥ =
[(Vτ0)⊥→ (Vτ1)⊥]⊥:

Jλ x
τ0

. t
τ1

τ0→τ1

Kρ

(Vτ0→τ1 )⊥

= bλ d
(Vτ0 )⊥

. J t
τ1

Kρ[d/x]

(Vτ1 )⊥

[(Vτ0 )⊥→(Vτ1 )⊥]

c

[(Vτ0 )⊥→(Vτ1 )⊥]⊥

9.2.8 Function Application

Similarly to the case of projections, we apply the de-lifted version of the function to
its argument:
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J(t1 t0)Kρ
def
= let ϕ ⇐ Jt1Kρ. ϕ(Jt0Kρ)

= (λϕ. ϕ (Jt0Kρ))∗ (Jt1Kρ)

At the level of types, we have:

J( t1
τ0→τ1

t0
τ0

)

τ1

Kρ

(Vτ1 )⊥

= let ϕ

Vτ0→τ1

⇐ Jt1Kρ

(Vτ0→τ1 )⊥

. ϕ

Vτ0→τ1

(Jt0Kρ

(Vτ0 )⊥

)

(Vτ1 )⊥

(Vτ1 )⊥

9.2.9 Recursion

For handling recursion we would like to find a solution (in the domain (Vτ)⊥, for
t : τ) to the recursive equation

Jrec x. tKρ = JtKρ[Jrec x. tKρ/x]

The least solution can be computed simply by applying the fix operator of the
meta-language:

Jrec x. tKρ
def
= fix λd. JtKρ[d/x]

Finally, we check that also this last definition is consistent with the typing:

Jrec x
τ

. t
τ

τ

Kρ

(Vτ )⊥

= fix
[[(Vτ )⊥→(Vτ )⊥]→(Vτ )⊥]

λ d
(Vτ )⊥

. Jt
τ

Kρ[d/x]

(Vτ )⊥

[(Vτ )⊥→(Vτ )⊥]

(Vτ )⊥

9.2.10 Eager Semantics

The denotational semantics we have defined is lazy, in the sense that the evaluation of
the argument is not enforced by the interpretation of application. The corresponding
eager variant could be defined simply by letting

J(t1 t0)Kρ
def
= let ϕ ⇐ Jt1Kρ. let d⇐ Jt0Kρ. ϕ(d)

The difference is that, according to the eager semantics, J(t1 t0)Kρ evaluates to ⊥
when Jt0Kρ evaluates to⊥, while this is not necessarily the case in the lazy semantics.
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9.2.11 Examples

Example 9.1. Let us see some simple examples of evaluation of the denotational
semantics. We consider three similar terms f , g and h such that f and h have the
same denotational semantics while g has a different semantics because it requires a
parameter x to be evaluated even if it is not used:

1. f def
= λx : int. 3

2. g def
= λx : int. if x then 3 else 3

3. h def
= recy : int→ int. λx : int. 3

Note that f ,g,h : int→ int. For the term f we have

J f Kρ = Jλx. 3Kρ = bλd. J3Kρ[d/x]c= bλd. b3cc

When considering g, instead

JgKρ = Jλx. if x then 3 else 3Kρ

= bλd. Jif x then 3 else 3Kρ[d/x]c
= bλd. Cond(d,b3c,b3c)c
= bλd. let x⇐ d. b3cc

where the last equality follows from the fact that both expressions Cond(d,b3c,b3c)
and let x⇐ d. b3c evaluate to ⊥Z⊥ when d =⊥Z⊥ and to b3c if d is a lifted value.
Thus we can conclude that J f Kρ 6= JgKρ .

Finally, for h we get

JhKρ = Jrec y. λx. 3Kρ

= fix λdy. Jλx. 3Kρ[dy/y]

= fix λdy. bλdx. J3Kρ[dy/y,
dx /x]c

= fix λdy. bλdx. b3cc

Let Γh = λdy. bλdx. b3cc. We can compute the fixpoint by exploiting the fixpoint
theorem to compute successive approximations:

d0 = Γ
0

h (⊥[Z⊥→Z⊥]⊥) =⊥[Z⊥→Z⊥]⊥
d1 = Γh(d0) = (λdy. bλdx. b3cc)⊥= bλdx. b3cc
d2 = Γh(d1) = (λdy. bλdx. b3cc)bλdx. b3cc= bλdx. b3cc= d1

Since d2 = d1 we have reached the fixpoint and thus

JhKρ = bλdx. b3cc= J f Kρ.

Note that we could have avoided the calculation of d2, because d1 is already a
maximal element in [Z⊥→ Z⊥]⊥ and therefore it must be that Γh(d1) = d1.
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9.3 Continuity of Meta-language’s Functions

In order to show that the semantics is always well defined we have to show that all
the functions we employ in the definition are continuous, so that the fixpoint theory
is applicable.

Theorem 9.1. The following functions are monotone and continuous:

1. op⊥ : (Z⊥×Z⊥)→ Z⊥;
2. Condτ : Z⊥× (Vτ)⊥× (Vτ)⊥→ (Vτ)⊥;
3. ( , ) : (Vτ0)⊥× (Vτ1)⊥→Vτ0∗τ1 ;
4. π1 : Vτ0∗τ1 → (Vτ0)⊥;
5. π2 : Vτ0∗τ1 → (Vτ1)⊥;
6. let;
7. apply;
8. fix : [[(Vτ)⊥→ (Vτ)⊥]→ (Vτ)⊥].

Proof. Monotonocity is obvious in most cases. We focus on the continuity of the
various functions:

1. Since op⊥ is monotone over a domain with only finite chains then it is also
continuous.

2. By using Theorem 8.7, we can prove the continuity of Cond on each parameter
separately.
Let us show the continuity on the first parameter. Since chains in Z⊥ are finite,
it is enough to prove monotonicity. We fix d1,d2 ∈ (Vτ)⊥ and we prove the
monotonicity of λx. Condτ(x,d1,d2) : Z⊥→ (Vτ)⊥. Let n,m ∈ Z:

• the cases ⊥Z⊥ vZ⊥ ⊥Z⊥ and bnc vZ⊥ bnc are trivial;
• for the case ⊥Z⊥ vZ⊥ bnc obviously

Condτ(⊥Z⊥ ,d1,d2) =⊥(Vτ )⊥ v(Vτ )⊥ Condτ(bnc,d1,d2)

because ⊥(Vτ )⊥ is the bottom element of (Vτ)⊥;
• for the case bnc vZ⊥ bmc, since Z⊥ is a flat domain we have n = m and trivially

Condτ(bnc,d1,d2)v(Vτ )⊥ Condτ(bmc,d1,d2).

Now let us show the continuity on the second parameter, namely we fix v ∈ Z⊥
and d ∈ (Vτ)⊥ and for any chain {di}i∈N in (Vτ)⊥ we prove that

Condτ

(
v,
⊔
i∈N

di,d

)
=
⊔
i∈N

Condτ(v,di,d)

• if v =⊥Z⊥ , then

Condτ

(
⊥Z⊥ ,

⊔
i∈N

di,d

)
=⊥(Vτ )⊥ =

⊔
i∈N
⊥(Vτ )⊥ =

⊔
i∈N

Condτ(⊥Z⊥ ,di,d)
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• if v = b0c, then λx. Condτ(b0c,x,d) is the identity function λx. x and we have

Condτ

(
b0c,

⊔
i∈N

di,d

)
=
⊔
i∈N

di =
⊔
i∈N

Condτ(b0c,di,d)

• if v = bnc with n 6= 0, then λx. Condτ(bnc,x,d) is the constant function λx. d
and we have

Condτ

(
bnc,

⊔
i∈N

di,d

)
= d =

⊔
i∈N

d =
⊔
i∈N

Condτ(bnc,di,d)

In all cases Condτ is continuous.
Continuity on the third parameter is analogous.

3. For pairing ( , ) we can again use Theorem 8.7, which allows us to show sepa-
rately the continuity on each parameter. If we fix the first element we have(

d,
⊔
i∈N

di

)
=

(⊔
i∈N

d,
⊔
i∈N

di

)
=
⊔
i∈N

(d,di)

by definition of lub of a chain of pairs (see Theorem 8.1). The same holds for the
second parameter.

4. Projections π1 and π2 are continuous by Theorem 8.2.
5. The let function is continuous since (·)∗ is continuous by Theorem 8.4.
6. apply is continuous by Theorem 8.8
7. fix is continuous by Theorem 8.10. ut

In the previous theorem we have not mentioned the continuity proofs for lambda
abstraction and recursion. The next theorem fills these gaps.

Theorem 9.2. Let t : τ be a well-typed term of HOFL; then the following holds:

1. (λd. JtKρ[d/x]) is a continuous function;
2. if τ = τ0→ τ1 is a functional type, then fix λd. JtKρ[d/x] is a continuous function.

Proof. Let us prove the two properties.

1. We prove the stronger property that, for any n ∈ N

λ (d1, ...,dn). JtKρ[d1/x1 , · · · ,dn /xn ]

is a continuous function. The proof is by structural induction on t. Below, for
brevity, we write d̃ instead of d1, ...,dn and ρ ′ instead of ρ[d1/x1 , · · · ,dn /xn ]:

t = y: Then λ d̃. JyKρ ′ is either a projection function (if y = xi for some
i ∈ [1,n]) or the constant function λ d̃. ρ(y) (if y 6∈ {x1, ...,xn}),
which are continuous.
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t = t1 op t2: By the inductive hypothesis f1
def
= λ d̃. Jt1Kρ ′ and f2

def
= λ d̃. Jt2Kρ ′

are continuous. Then f def
= λ d̃. (( f1 d̃),( f2 d̃)) is continuous, and

λ d̃. Jt1 op t2Kρ ′ = λ d̃. (Jt1Kρ ′ op⊥ Jt2Kρ ′)

= λ d̃. ( f1 d̃) op⊥ ( f2 d̃)
= op⊥ ◦ f

is continuous because op⊥ is continuous and the composition of
continuous functions yields a continuous function by Theorem 8.5.

t = λy. t ′: By the inductive hypothesis we can assume that λ (d̃,d).Jt ′Kρ ′[d/y]

is continuous. Then curry(λ (d̃,d).Jt ′Kρ ′[d/y]) is continuous since
curry is continuous, and we conclude by noting that

curry(λ (d̃,d).Jt ′Kρ ′[d/y]) = λ d̃. λd. Jt ′Kρ ′[d/y]

= λ d̃.Jλy. t ′Kρ ′

We leave the remaining cases as an exercise.
2. To prove the second proposition we note that

fix λd.JtKρ[d/x]

is the application of a continuous function (i.e., the function fix, by Theorem 8.10)
to a continuous argument (i.e., λd.JtKρ[d/x], continuous by the first part of this
theorem) so it is continuous by Theorem 8.8. ut

We conclude this section by recalling that the definition of denotational semantics
is consistent with the typing.

Theorem 9.3 (Type consistency). If t : τ then ∀ρ ∈ Env. JtKρ ∈ (Vτ)⊥.

Proof. The proof is by structural induction on t and it has been outlined when giving
the structurally recursive definition of the denotational semantics (where we have
also relied on the previous continuity theorems). ut

9.4 Substitution Lemma and Other Properties

We conclude this chapter by stating some useful theorems. The most important is the
Substitution Lemma which states that the substitution operator commutes with the
interpretation function.

Theorem 9.4 (Substitution lemma). Let x, t : τ and t ′ : τ ′. We have
q

t ′[t/x]
y

ρ =
q

t ′
y

ρ[JtKρ/x]
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Proof. By Theorem 7.1 we know that t ′[t/x] : τ ′. The proof is by structural induction
on t ′ and is left as an exercise (see Problem 9.13). ut

In words, replacing a variable x with a term t in a term t ′ returns a term t ′[t/x]
whose denotational semantics Jt ′[t/x]Kρ = Jt ′Kρ[JtKρ/x] depends only on the denota-
tional semantics JtKρ of t.

Remark 9.1 (Compositionality). The substitution lemma is an important result, as it
implies the compositionality of denotational semantics, namely for all terms t1, t2
and environment ρ we have

Jt1Kρ = Jt2Kρ ⇒
q

t[t1/x]
y

ρ =
q

t[t2/x]
y

ρ

Theorem 9.5. Let t be a well-defined term of HOFL. Let ρ,ρ ′ ∈ Env such that
∀ x ∈ fv(t). ρ(x) = ρ ′(x) then

JtKρ = JtKρ
′

Proof. The proof is by structural induction on t and is left as an exercise (see
Problem 9.16). ut
Theorem 9.6. Let c ∈Cτ be a closed term in canonical form of type τ . Then we have

∀ ρ ∈ Env. JcKρ 6=⊥(Vτ )⊥

Proof. Immediate, by inspection of the clauses for terms in canonical form. ut

Problems

9.1. Consider the HOFL term

t def
= rec f . λx. if x then 0 else ( f (x)× f (x))

Derive the type, the canonical form and the denotational semantics of t.

9.2. Consider the HOFL term

t def
= rec f . λx. λy. if x× y then x else ( f x)(( f x)y)

Derive the type, the canonical form and the denotational semantics of t.

9.3. Consider the HOFL term

t def
= fst( (λx. x) ( 1 , ((rec f . λy. ( f y)) 2) ) ).

Derive the type, the canonical form and the denotational semantics of t.

9.4. Consider the HOFL term

t def
= rec f . λx. if x then 1 else (g ( f (x−1)))
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1. Derive the type of t and the denotational semantics of JtKρ by assuming that
ρg = bhc for some suitable h.

2. Compute the canonical form of the term (((λg. t) λx. x) 1). Would it be possible
to compute the canonical form of t?

9.5. Let us consider the following recursive definition:

f (x) def
= if x = 0 then 1 else 2× f (x−1).

1. Define a well-formed, closed HOFL term t that corresponds to the above definition
and determine its type.

2. Compute its denotational semantics JtKρ and prove that

n≥ 0 ⇒ let ϕ ⇐ JtKρ. ϕbnc= b2nc

Hint: Prove that the nth fixpoint approximation is

dn = b λd. Cond(b0c ≤ ⊥d < ⊥bnc , b2dc , ⊥) c

9.6. Let us consider the following recursive definition:

f (x) def
= if x = 0 then 0 else f ( f (x−1))

1. Define a well-formed, closed HOFL term t that corresponds to the above definition
and determine its type, its canonical form and its denotational semantics.

2. Define the set of fixpoints that satisfy the recursive definition.

9.7. Consider the HOFL term

t def
= rec f . λx. if x then 0 else f (x− x)

1. Determine the type of t and its denotational semantics JtKρ = fix Γ .
2. Is fix Γ the unique fixpoint of Γ ?

Hint: Consider the elements greater than fix Γ in the order and check whether
they are fixpoints for Γ .

9.8. Consider the Fibonacci sequence already found in Problem 4.14 and the corre-
sponding term t from Problem 7.8:

F(0) def
= 1 F(1) def

= 1 F(n+2) def
= F(n+1)+F(n)

where n ∈ N.

1. Compute a suitable transformation Γ such that JtKρ = fix Γ .
2. Prove that the denotational semantics JtKρ satisfies the above equations, to con-

clude that the given implementation of Fibonacci numbers is correct.
Hint: Compute J(t 0)Kρ , J(t 1)Kρ and J(t n+2)Kρ exploiting the equality JtK =
Γ JtK.
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9.9. Assuming that t1 has type τ1, let us consider the term t2
def
= λx. (t1 x).

1. Do the two terms have the same type?
2. Do the two terms have the same lazy denotational semantics?

9.10. Let us consider the terms

t1
def
= λx. rec y. y+1

t2
def
= rec y. λx. (y x)+2

1. Do the two terms have the same type?
2. Do the two terms have the same lazy denotational semantics?

9.11. Given a monotone function f : Z⊥→ Z⊥, prove that f⊥Z⊥ = f ( f⊥Z⊥). Then,
let t : int→ int be a closed term of HOFL and consider the term

t1
def
= rec f . λx. (t ( f x))

1. Determine the most general type of t1.
2. Exploit the above result to prove that Jt1Kρ = Jt2Kρ , where

t2
def
= rec f . λx. (t rec y. y)

9.12. Let us extend the syntax of (lazy) HOFL by adding the construct for sequential
composition t1; t2 that, informally, represents the function obtained by applying the
function t1 to the argument and then the function t2 to the result. Define, for the new
construct

1. the typing rule;
2. the (big-step) operational semantics;
3. the denotational semantics.

Then prove that for every closed term t, the terms (t1; t2 t) and (t2 (t1 t)) have the
same type and are equivalent according to the denotational semantics.

9.13. Complete the proof of the Substitution Lemma (Theorem 9.4).

9.14. Let t1, t2 be well-formed HOFL terms and ρ an environment.

1. Prove that

Jt1Kρ = Jt2Kρ ⇒ J(t1 x)Kρ = J(t2 x)Kρ (9.1)

2. Prove that the inverse implication is generally not valid by giving a counterexam-
ple. Then, find the conditions under which the reversed implication also holds.

3. Exploit the Substitution Lemma (Theorem 9.4) to prove that for all t and x 6∈
fv(t1)∪ fv(t2)

Jt1Kρ = Jt2Kρ ⇒ Jt[t1/x]Kρ = Jt[t2/x]Kρ (9.2)
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4. Observe that the implication 9.1 is just a special case of the latter equality 9.2 and
explain why.

9.15. Is it possible to modify the denotational semantics of HOFL assigning to the
construct

if t then t0 else t1

• the semantics of t1 if the semantics of t is ⊥N⊥ , and
• the semantics of t0 otherwise? (If not, why?)

9.16. Complete the proof of Theorem 9.5.



Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type τ are more concrete than the mathematical
elements of the corresponding domain (Vτ)⊥. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

∀t,c. t→ c ?⇔ ∀ρ . JtKρ = JcKρ

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t→ c⇒∀ρ . JtKρ = JcKρ but (∀ρ. JtKρ = JcKρ) 6⇒ t→ c

© Springer International Publishing Switzerland 2017
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Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = λx. x+0 and c1 = λx. x be two HOFL terms, where x : int.
Clearly

Jc0Kρ = Jc1Kρ but c0 6→ c1

In fact, from the denotational semantics we get

Jc0Kρ = Jλx. x+0Kρ = bλd. d+⊥b0cc= bλd. dc= Jλx. xKρ = Jc1Kρ

but for the operational semantics we have that both λx. x and λx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int→ int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z⊥→ Z⊥]⊥. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = 0 )
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t ↓ denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t ⇓ denote the fact that the term t : τ is
assigned a denotation other than ⊥(Vτ )⊥ (called denotational convergence), we have
the perfect match:

t ↓ ⇔ t ⇓

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : τ be a HOFL closed term and let c : τ be a
canonical form. Then we have

t→ c ⇒ ∀ρ ∈ Env. JtKρ = JcKρ

Proof. We proceed by rule induction. So we prove

P(t→ c) def
= ∀ρ. JtKρ = JcKρ
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for the conclusion t→ c of each rule, when the predicate holds for the premises.

Cτ : The rule for terms in canonical forms (integers, pairs, abstraction) is

c→ c

We have to prove P(c→ c) def
= ∀ρ. JcKρ = JcKρ , which is obviously true.

Arit.: Let us consider the rules for arithmetic operators op ∈ {+,−,×}:
t1→ n1 t2→ n2

t1 op t2→ n1 op n2

We assume the inductive hypotheses:

P(t1→ n1)
def
= ∀ρ. Jt1Kρ = Jn1Kρ = bn1c

P(t2→ n2)
def
= ∀ρ. Jt2Kρ = Jn2Kρ = bn2c

and we want to prove

P(t1 op t2→ n1 op n2)
def
= ∀ρ. Jt1 op t2Kρ =

r
n1 op n2

z
ρ

We have

Jt1 op t2Kρ = Jt1Kρ op⊥ Jt2Kρ (by definition of J·K)
= bn1c op⊥bn2c (by inductive hypotheses)
= bn1 op n2c (by definition of op⊥)

=
r

n1 op n2

z
ρ (by definition of J·K)

Cond.: In the case of the conditional construct we have two rules to consider. For

t→ 0 t0→ c0

if t then t0 else t1→ c0

we can assume

P(t→ 0) def
= ∀ρ. JtKρ = J0Kρ = b0c

P(t0→ c0)
def
= ∀ρ. Jt0Kρ = Jc0Kρ

and we want to prove

P(if t then t0 else t1→ c0)
def
= ∀ρ. Jif t then t0 else t1Kρ = Jc0Kρ

We have



208 10 Equivalence Between HOFL Denotational and Operational Semantics

Jif t then t0 else t1Kρ = Cond(JtKρ,Jt0Kρ,Jt1Kρ) (by def. of J·K
= Cond(b0c,Jt0Kρ,Jt1Kρ) (by ind. hyp.)
= Jt0Kρ (by def. of Cond)
= Jc0Kρ (by ind. hyp.)

An analogous argument holds for the second rule of the conditional opera-
tor.

Proj.: Let us consider the rule for the first projection:

t→ (t0, t1) t0→ c0

fst(t)→ c0

We can assume

P(t→ (t0, t1))
def
= ∀ρ. JtKρ = J(t0, t1)Kρ

P(t0→ c0)
def
= ∀ρ. Jt0Kρ = Jc0Kρ

and we want to prove

P(fst(t)→ c0)
def
= ∀ρ. Jfst(t)Kρ = Jc0Kρ

We have

Jfst(t)Kρ = π∗1 (JtKρ) (by def. of J·K)
= π∗1 (J(t0, t1)Kρ) (by ind. hyp.)
= π∗1 (b(Jt0Kρ,Jt1Kρ)c) (by def. of J·K)
= π1(Jt0Kρ,Jt1Kρ) (by def. of lifting)
= Jt0Kρ (by def. of π1)
= Jc0Kρ (by ind. hyp.)

An analogous argument holds for the snd operator.
App.: The rule for application is

t1→ λx. t ′1 t ′1[
t0/x]→ c

(t1 t0)→ c

We can assume

P(t1→ λx. t ′1)
def
= ∀ρ. Jt1Kρ =

q
λx. t ′1

y
ρ

P(t ′1[
t0/x]→ c) def

= ∀ρ.
q

t ′1[
t0/x]

y
ρ = JcKρ

and we want to prove

P((t1 t0)→ c) def
= ∀ρ. J(t1 t0)Kρ = JcKρ

We have
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J(t1 t0)Kρ = let ϕ ⇐ Jt1Kρ. ϕ(Jt0Kρ) (by definition of J·K)

= let ϕ ⇐ Jλx. t ′1Kρ. ϕ(Jt0Kρ) (by ind. hypothesis)

= let ϕ ⇐
⌊
λd. Jt ′1Kρ[d/x]

⌋
. ϕ(Jt0Kρ) (by definition of J·K)

= (λd. Jt ′1Kρ[d/x]) (Jt0Kρ) (by de-lifting)

= Jt ′1Kρ[Jt0Kρ/x] (by application)

= Jt ′1[
t0/x]Kρ (by Subst. Lemma)

= JcKρ (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x]→ c

rec x. t→ c

We can assume

P(t[rec x. t/x]→ c) def
= ∀ρ.

q
t[rec x. t/x]

y
ρ = JcKρ

and we want to prove

P(rec x. t→ c) def
= ∀ρ. Jrec x. tKρ = JcKρ.

We have

Jrec x. tKρ = JtKρ[Jrec x. tKρ/x] (by definition)

= Jt[rec x. t/x]Kρ (by the Substitution Lemma)

= JcKρ (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : τ be a closed term of HOFL.
We define the following predicate:

t ↓ ⇔ ∃c ∈Cτ . t −→ c

If t ↓, then we say that t converges operationally. We say that t diverges, written t ↑,
if t does not converge operationally.
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A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ⊥.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type τ . We define the following predicate:

t ⇓ ⇔ ∀ρ ∈ Env,∃v ∈Vτ . JtKρ = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t ↓⇒ t ⇓ can be readily proved.

Theorem 10.2. Let t : τ be a closed typable term of HOFL. Then we have

t ↓ ⇒ t ⇓

Proof. If t→ c, then ∀ρ. JtKρ = JcKρ by Theorem 10.1. But JcKρ is a lifted value,
(see Theorem 9.6) and thus it is different from ⊥(Vτ )⊥ . ut

Also the opposite implication t ⇓⇒ t ↓ holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t ⇓⇒ t ↓).
The property P(t) def

= t ⇓⇒ t ↓ cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 ⇓⇒ t1 ↓ and P(t0)

def
= t0 ⇓⇒ t0 ↓

and we want to prove P(t1 t0)
def
= (t1 t0) ⇓⇒ (t1 t0) ↓.

Let us assume the premise (t1 t0) ⇓ (i.e., J(t1 t0)Kρ 6=⊥) of the implication. We
would like to prove that (t1 t0) ↓, i.e., that ∃c. (t1 t0)→ c. By the definition of the
denotational semantics we have t1 ⇓. In fact

J(t1 t0)Kρ
def
= let ϕ ⇐ Jt1Kρ. ϕ(Jt0Kρ)

and therefore J(t1 t0)Kρ 6=⊥ requires Jt1Kρ 6=⊥. By the first inductive hypothesis
we then have t1 ↓ and by the definition of the operational semantics it must be the
case that t1→ λx. t ′1 for some x and t ′1. By correctness (Theorem 10.1), we then have

Jt1Kρ =
q

λx. t ′1
y

ρ =
⌊

λd.
q

t ′1
y

ρ[d/x]
⌋
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Therefore

J(t1 t0)Kρ = let ϕ ⇐
⌊
λd. Jt ′1Kρ[d/x]

⌋
. ϕ(Jt0Kρ) (see above)

= (λd. Jt ′1Kρ[d/x]) (Jt0Kρ) (by de-lifting)

= Jt ′1Kρ[Jt0Kρ/x] (by functional application)

= Jt ′1[
t0/x]Kρ (by the Substitution Lemma)

So (t1 t0) ⇓ if and only if t ′1[
t0/x] ⇓. We would like to conclude by structural induction

that t ′1[
t0/x] ↓ and then prove the theorem by using the rule

t1→ λx. t ′1 t ′1[
t0/x]→ c

(t1 t0)→ c

but this is incorrect since t ′1[
t0/x] is not a subterm of (t1 t0) and we are not allowed to

assume that P(t ′1[
t0/x]) holds.

Theorem 10.3. For any closed typable term t : τ we have:

t ⇓ ⇒ t ↓

Proof. The proof exploits two suitable logical relations, indexed by HOFL types:

• .c
τ⊆Vτ ×Cτ , which relates canonical forms to corresponding values in Vτ and is

defined by structural induction over types τ;
• .τ⊆ (Vτ)⊥×Tτ , which relates well-formed (closed) terms to values in (Vτ)⊥ and

is defined by letting

d .τ t def
= ∀v ∈Vτ . d = bvc ⇒ ∃c. t→ c∧ v.c

τ c

In particular, note that, by definition, we have ⊥(Vτ )⊥ .τ t for any term t : τ .

The logical relation on canonical forms is defined as follows:

ground type: we simply let n.c
int n;

product type: we let (d0,d1).c
τ0∗τ1

(t0, t1) iff d0 .τ0 t0 and d1 .τ1 t1;
function type: we let ϕ .c

τ0→τ1
λx. t iff ∀d0 ∈ (Vτ0)⊥ and ∀t0 : τ0 closed, d0 .τ0 t0

implies ϕ(d0).τ1 t[t0/x].

Then one can show by structural induction on t : τ that

1. ∀d,d′ ∈ (Vτ)⊥. (d v(Vτ )⊥ d′∧d′ .τ t)⇒ d .τ t;
2. if {di}i∈N is a chain in (Vτ)⊥ such that ∀i ∈ N. di .τ t, we have

⊔
i∈N di .τ t (i.e.,

the predicate ·.τ t is inclusive).

Finally, by structural induction on terms, one can prove that ∀t : τ with fv(t)⊆{x1 :
τ1, . . . ,xk : τk}, if ∀i∈ [1,k]. di .τi ti then JtKρ[d1/x1 , ...,

dk /xk ].τ t[t1/x1 , ...,
tk /xk ]. In

fact, taking t : τ closed, it follows from the definition of.τ that if t ⇓, i.e., JtKρ = bvc
for some v ∈Vτ , then t→ c for some canonical form c, i.e., t ↓. ut
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10.4 Operational and Denotational Equivalences of Terms

In Section 10.1 we have shown that the denotational semantics is more abstract
than the operational. In order to study the relationship between the operational
and denotational semantics of HOFL we now introduce two equivalence relations
between terms. Operationally two closed terms are equivalent if they both diverge or
have the same canonical form.

Definition 10.3 (Operational equivalence). Let t0 and t1 be two well-typed terms
of HOFL. We define a binary relation ≡op as follows:

t0 ≡op t1 ⇔ (t0 ↑ ∧ t1 ↑)∨ (∃c. t0→ c ∧ t1→ c)

We say that t0 is operationally equivalent to t1 if t0 ≡op t1.

We have also the denotational counterpart of the definition of equivalence.

Definition 10.4 (Denotational equivalence). Let t0 and t1 be two well-typed terms
of HOFL. We define a binary relation ≡den as follows:

t0 ≡den t1 ⇔ ∀ρ .Jt0Kρ = Jt1Kρ

We say that t0 is denotationally equivalent to t1 if t0 ≡den t1.

Remark 10.2. Note that the definition of denotational equivalence applies also to
non-closed terms. Operational equivalence of non-closed terms t and t ′ could also
be defined by taking the closure of the equivalence w.r.t. the embedding of t and t ′

in any context C[·] such that C[t] and C[t ′] are also closed, i.e., by requiring that C[t]
and C[t ′] are operationally equivalent for any context C[·].

From Theorem 10.1 it follows that ≡op⇒≡den.
As pointed out in Example 10.1, we know that ≡den 6⇒ ≡op.
So it is in this sense that we can say that the denotational semantics is more

abstract then the operational one, because the former identifies more terms than the
latter. Note that if we assume t0 ≡den t1 and Jt0Kρ 6=⊥ then we can only conclude
that t0→ c0 and t1→ c1 for some canonical forms c0 and c1. We have Jc0Kρ = Jc1Kρ ,
but nothing ensures that c0 = c1 (see Example 10.1 at the beginning of this chapter).

Only when we restrict our attention to the terms of HOFL that are typed as integers
do the corresponding operational and denotational semantics fully agree. This is
because if c0 and c1 are canonical forms in Cint then it holds that Jc0Kρ = Jc1Kρ ⇔
c0 = c1. It can be proved that int is the only type for which the full correspondence
holds.

Theorem 10.4. Let t : int be a closed term of HOFL and n ∈ Z. Then

∀ρ. JtKρ = bnc ⇔ t→ n

Proof. We prove the two implications separately.
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⇒) If JtKρ = bnc, then t ⇓ and thus t ↓ by the soundness of the denotational
semantics, namely ∃m such that t→m, but then JtKρ = bmc by Theorem 10.1,
thus n = m and t→ n.

⇐) Just Theorem 10.1, because JnKρ = bnc. ut

10.5 A Simpler Denotational Semantics

We conclude this chapter by presenting a simpler denotational semantics which we
call unlifted, because it does not use the lifted domains. This semantics is simpler but
also less expressive than the lifted one. We define the following new domains:

Dint
def
= Z⊥ Dτ1∗τ2

def
= Dτ1 ×Dτ2 Dτ1→τ2

def
= [Dτ1 → Dτ2 ]

Now we can let Env′ def
= Var→⋃

τ Dτ and define the simpler interpretation func-
tion Jt : τK′ : Env′→ Dτ as follows (where ρ ∈ Env′):

(exactly as before)
JnK′ρ = bnc
JxK′ρ = ρ(x)

Jt1 op t2K′ρ = Jt1K′ρ op⊥ Jt2K′ρ
Jif t0 then t1 else t2K′ρ = Cond(Jt0K′ρ,Jt1K′ρ,Jt2K′ρ)

Jrec x. tK′ρ = fixλd. JtK′ρ[d/x]

(updated definitions)
J(t1, t2)K′ρ = (Jt1K′ρ,Jt2K′ρ)
Jfst(t)K′ρ = π1(JtK′ρ)

Jsnd(t)K′ρ = π2(JtK′ρ)
Jλx. tK′ρ = λd. JtK′ρ[d/x]

J(t1 t2)K′ρ = (Jt1K′ρ) (Jt2K′ρ)

Note that the “unlifted” semantics differ from the “lifted” one only in the cases
of pairing, projections, abstraction and application. On the one hand the unlifted
denotational semantics is much simpler to read than the lifted one. On the other hand
the unlifted semantics is more abstract than the lifted one and cannot express some
interesting properties. For instance, consider the two HOFL terms

t1
def
= rec x. x : int→ int and t2

def
= λx. rec y. y : int→ int

In the lifted semantics we have Jt1Kρ =⊥[Z⊥−→Z⊥]⊥ and Jt2Kρ = b⊥[Z⊥−→Z⊥]c, thus

t1 6⇓ and t2 ⇓

In the unlifted semantics Jt1K′ρ = Jt2K′ρ =⊥[Z⊥−→Z⊥], thus
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t1 6⇓′ and t2 6⇓′

Note however that t1 ↑ while t2 ↓, thus the property t ↓⇒ t ⇓′ does not hold, at least
for some t : int→ int, since t2 ↓ but t2 6⇓′. However, the property holds for the unlifted
semantics in the case of integers.

As a concluding remark, we observe that the existence of two different denota-
tional semantics for HOFL, both reasonable, shows that denotational semantics is, to
some extent, an arbitrary construction, which depends on the properties one wants to
express.

Problems

10.1. Prove that the HOFL terms

t1
def
= rec f . λx. ((λy. 1) ( f x)) t2

def
= λx. 1

have the same type and the same denotational semantics but different canonical
forms.

10.2. Let us consider the HOFL term

map def
= λ f . λx. (( f fst(x)),( f snd(x)))

from Problem 7.5.

1. Give the denotational semantics of map and of (map λ z. z).
2. Give two terms t1 : int and t2 : int such that the terms

((map λ z. z)(t1, t2)) ((map λ z. z)(t2, t1))

have different canonical forms but the same denotational semantics.

10.3. Consider the HOFL term

t def
= rec x. ((λy. if y then 0 else 0) x)

from Problem 7.6. Compute its denotational semantics, checking the equivalence
with its operational semantics.

10.4. Consider the HOFL term

t def
= rec f . λx. if fst(x)× snd(x) then x else ( f ( f x))

Derive the type, the canonical form and the denotational semantics of t. Finally show
another term t ′ with the same denotational semantics as t but with different canonical
form.
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10.5. Consider the HOFL term

t def
= rec f . λx. if fst(x)− snd(x) then x else ( f x)

Derive the type, the canonical form and the denotational semantics of t. Finally show
another term t ′ with the same denotational semantics as t but with different canonical
form.

10.6. Consider the HOFL term

t def
= rec F. λ f . λn. if ( f n) then 0 else ((F f ) n)

Derive the type, the canonical form and the denotational semantics of t. Finally show
another term t ′ with the same denotational semantics as t but with different canonical
form.

10.7. Consider the HOFL term

t def
= rec f . λx. if (fst(x) snd(x)) then x else ( f x)

Derive the type, the canonical form and the denotational semantics of t. Finally show
another term t ′ with the same denotational semantics as t but with different canonical
form.

10.8. Modify the ordinary HOFL semantics by defining the denotational semantics
of the conditional construct as follows

Jif t then t0 else t1Kρ =Condd(JtKρ,Jt0Kρ,Jt1Kρ)

where

Condd(z,z0,z1) =

 z0 if z = b0c ∨ z0 = z1
z1 if z = bnc ∧ n 6= 0
⊥ otherwise

Assume that t0, t1 : int.

1. Prove that Condd is a monotonic, continuous function.
2. Show a HOFL term with a different semantics than the ordinary, and explain how

the relation between operational and denotational semantics of HOFL is actually
changed.

10.9. Modify the semantics of HOFL assuming the following operational semantics
for the conditional command:

t0→ 0 t1→ c1 t2→ c2

if t0 then t1 else t2→ c1

t0→ n n 6= 0 t1→ c1 t2→ c2

if t0 then t1 else t2→ c2
.

1. Exibit the corresponding denotational semantics.
2. Prove that also for the modified semantics it holds that t→ c implies JtK = JcK.
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3. Finally, compute the operational and the denotational semantics of (fact 0), with

fact def
= rec f . λx. if x then 1 else x× ( f (x−1))

and check whether they coincide.

10.10. Suppose the operational semantics of projections is changed

from
t→ (t1, t2) t1→ c

fst(t)→ c
to

t→ (t1, t2) t1→ c t2→ c′

fst(t)→ c

and analogously for snd, without changing the denotational semantics.

1. Prove that the property t→ c⇒ JtKρ = JcKρ is still valid.
2. Exhibit a counterexample showing that the property JtKρ 6= ⊥⇒ t → c is no

longer valid.
3. Finally, modify the denotational semantics to recover the above property and

illustrate its validity for the counterexample previously proposed.

10.11. Modify the operational semantics of HOFL by taking the following rules for
conditionals:

t→ 0 t0→ c0 t1→ c1

if t then t0 else t1→ c0

t→ n n 6= 0 t0→ c0 t1→ c1

if t then t0 else t1→ c1

without changing the denotational semantics. Prove that

1. for any term t and canonical form c, we have t→ c ⇒ ∀ρ . JtKρ = JcKρ;
2. in general t ⇓ 6⇒ t ↓ (and exhibit a counterexample).

10.12. Suppose we extend HOFL with the inference rule

t1→ 0
t1× t2→ 0

as in Problem 7.12.

1. Exhibit a counterexample showing that the property

∀t,c. t→ c ⇒ ∀ρ . JtKρ = JcKρ

is no longer valid.
2. Modify the denotational semantics so that the above correspondence is obtained,

and prove that this is the case.
3. Repeat the exercise adding also the inference rule

t2→ 0
t1× t2→ 0

10.13. Prove formally that
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if x 6∈ fv(t) then rec x. t is equivalent to t

employing both the operational and the denotational semantics.

10.14. Assume that the HOFL term t0 has c0 as canonical form.

1. Exploit the Substitution Lemma (Theorem 9.4) to prove that for every term t ′1 we
have q

t ′1[
t0/x]

y
ρ =

q
t ′1[

c0/x]
y

ρ

2. Prove that if t ′1 : int and fv(t ′1)⊆ {x}, then t ′1[
t0/x]≡op t ′1[

c0/x].
3. Conclude that if we replace the lazy evaluation rule

t1→ λx. t ′1 t ′1[t0/x]→ c
(t1 t0)→ c

with the eager rule

t1→ λx. t ′1 t0→ c0 t ′1[c0/x]→ c
(t1 t0)→ c

then, if (t1 t0) → c : int in the eager semantics, then (t1 t0) → c in the lazy
semantics.

4. Exhibit a simple counterexample such that ∃c. (t1 t0)→ c according to the lazy
semantics but not to the eager one.

5. Finally, exhibit another counterexample where the type of t ′1 is not int and the
properties in points 2 and 3 do not hold.

10.15. Extend the operational semantics of HOFL to non-closed terms, by allowing
canonical forms that are not closed but otherwise keeping the same inference rules.
Show an example of reduction to canonical form for a non-closed term t. Then, prove
that the following properties are still valid:

1. subject reduction: t : τ and t→ c implies c : τ;
2. t → c implies JtKρ = JcKρ (recall that the Substitution Lemma holds for any

terms, including non-closed ones);
3. t ↓ implies t ⇓;
4. t1 : int→ c1, t2 : int→ c2 and Jt1K = Jt2K imply c1 = c2;
5. t→ c implies Jt[rec z. z/x]Kρ = Jc[rec z. z/x]Kρ .

Hint: Exploit property 2 above and the Substitution Lemma.

10.16. Modify the denotational semantics of HOFL by restricting the use of the
lifting domain construction only to integers, namely Vint = Z⊥ but Vτ1∗τ2 =Vτ1 ×Vτ2
and similarly for functions.

1. List all the modified clauses of the denotational semantics.
2. Prove that t→ c implies JtKρ = JcKρ .
3. Finally, prove that it is not true that t→ c implies JtKρ 6=⊥.

Hint: consider the HOFL term t def
= rec f . λx. ( f x) : int→ int.



Part IV
Concurrent Systems



This part focuses on models and logics for concurrent, interactive systems. Chap-
ter 11 defines the syntax, operational semantics and abstract semantics of CCS,
the Calculus of Communicating Systems. Chapter 12 introduces several logics for
the specification and verification of concurrent systems, namely LTL, CTL and the
µ-calculus. Chapter 13 studies the π-calculus, an enhanced version of CCS, where
new communication channels can be created dynamically and communicated to other
processes.



Chapter 11
CCS, the Calculus of Communicating Systems

I think it’s only when we move to concurrency that we have
enough to claim that we have a theory of computation which is
independent of mathematical logic or goes beyond what logicians
have studied, what algorithmists have studied. (Robin Milner)

Abstract In the case of sequential paradigms like IMP and HOFL we have seen
that all computations are deterministic and that any two non-terminating programs
are equivalent. This is not necessarily the case for concurrent, interacting systems,
which can exhibit different observable behaviours while they compute, also along
infinite runs. Consider, e.g., the software governing a web server or the processes
of an operating system. In this chapter we introduce a language, called CCS, whose
focus is the interaction between concurrently running processes. CCS can be used
both as an abstract specification language and as a programming language, allowing
seamless comparison between system specifications (desired behaviour) and concrete
implementations. We shall see that nondeterminism and non-termination are desirable
semantic features in this setting. We start by presenting the operational semantics
of CCS in terms of a labelled transition system. Then we define some abstract
equivalences between CCS terms, and investigate their properties with respect to
compositionality and algebraic axiomatisation. In particular we study bisimilarity,
a milestone abstract equivalence with large applicability and interesting theoretical
properties. We also define a suitable modal logic, called Hennessy-Milner logic,
whose induced logical equivalence is shown to coincide with strong bisimilarity.
Finally, we characterise strong bisimilarity as a fixpoint of a monotone operator and
explore some alternative abstract equivalences where internal, invisible actions are
abstracted away.

11.1 From Sequential to Concurrent Systems

In the last decade computer science technologies have boosted the growth of large-
scale concurrent and distributed systems. Their formal study introduces several
aspects which are not present in the case of sequential programming languages like
those studied in previous chapters. In particular, the necessity emerges to deal with
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Nondeterminism: Nondeterminism is needed to model time races between dif-
ferent signals and to abstract away from programming details
which are irrelevant for the interactive behaviour of systems.

Parallelism: Parallelism allows agents to perform tasks independently. For
our purposes, this will be modelled by using nondeterministic
interleaving of concurrent transitions.

Interaction: Interaction allows us to describe the behaviour of the system
from an abstract point of view (e.g., the behaviour that the
system exhibits to an external observer).

Infinite runs: Accounting for different non-terminating behaviours at the se-
mantic level allows us to distinguish different classes of non-
terminating processes when they have different interaction capa-
bilities.

Accordingly, some additional efforts must be spent to extend in a proper way the
semantics of sequential systems to that of concurrent systems.

In this chapter we introduce CCS, a specification language which allows us to
describe concurrent communicating systems. Such systems are composed of agents
(also processes) that communicate through channels.

The semantics of sequential languages can be given by defining functions. In the
presence of nondeterministic behaviour, functions do not seem to provide the right
tool to abstract the behaviour of concurrent systems. As we will see, this problem
is worked out by modelling the system behaviour as a labelled transition system,
i.e., as a set of states equipped with a transition relation which keeps track of the
interactions between the system and its environment. Transitions are labelled with
symbolic actions that model the kind of computational step that is performed. In
addition, recall that the denotational semantics is based on fixpoint theory over CPOs,
while it turns out that several interesting properties of nondeterministic systems with
non-trivial infinite behaviours are not inclusive (as is the case with fairness, described
in Example 6.9), thus the principle of computational induction does not apply to such
properties. As a consequence, defining a satisfactory denotational semantics for CCS
is far more complicated than for the sequential case.

Non-terminating sequential programs, as expressed in IMP and HOFL, are as-
signed the same semantics, For example, we recall that, in the denotational se-
mantics, any sequential program that does not terminate (e.g., the IMP command
while true do skip or the HOFL term rec x. x) is assigned the denotation ⊥, hence
all diverging programs are considered equivalent. Labelled transition systems allow
us to assign different semantics to non-terminating concurrent programs.

Last, but not least, labelled transition systems are often equipped with a modal
logic counterpart, which allows us to express and prove the relevant properties of the
modelled system.

Let us show how CCS works with an example.

Example 11.1 (Dynamic concurrent stack). Let us consider the problem of modelling
an extensible stack. The idea is to represent the stack as a collection of cells that are
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dynamically created and destroyed and that communicate by sending and receiving
data over some channels:1

• the send operation of data v over channel α is denoted by αv;
• the receive operation of data x over channel α is denoted by αx.

We have one process (or agent) for each cell of the stack. Each process can
store one incoming value or send a stored value to other processes. All processes
involved in the implementation of the extensible stack follow essentially the same
communication pattern. We represent graphically one such process as follows:

CELL

↵ �

� �

The figure shows that a CELL has four channels α,β ,γ,δ that can be used to
communicate with other cells. A stack is obtained by aligning the necessary cells in a
sequence. In general, a process can perform bidirectional operations on its channels.
Instead, in this particular case, each cell will use each channel for either input or
output operations (but not both) as suggested by the arrows in the above figure:

Channel α: is the input channel to receive data from either the external environ-
ment or the left neighbour cell;

Channel γ: is the channel used to send data to either the external environment or
the left neighbour cell;

Channel β : is the channel used to send data to the right neighbour cell and to
manage the end of the stack;

Channel δ : is the channel used to receive data from the right neighbour cell and
to manage the end of the stack.

In the following, we specify the possible states (CELL0, CELL1, CELL2 and
ENDCELL) that a cell can have, each corresponding to some specific behaviour.
Note that some states are parameterised by certain values that represent, e.g., the
particular values stored in that cell. The four possible states are described below:

CELL0
def
= δx. if x = $ then ENDCELL else CELL1(x)

The state CELL0 represents the empty cell. The agent CELL0 waits for some data
from the channel δ and stores it in x. Then the agent checks whether the received
value is equal to a special termination character $. If the received data is $ this means
that the agent is becoming the last cell of the stack, so it switches to the ENDCELL
state. Otherwise, if x is a valid value, the agent moves to the state CELL1(x).

1 In the literature, alternative notations for send and receive operations can be found, such as α!v
for sending the value v over α and α?(x) or just α(x) for receiving a value over α and binding it to
the variable x.
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CELL1(v)
def
= αy.CELL2(y,v) + γv.CELL0

The state CELL1(v) represents a cell that contains the value v. In this case the cell can
nondeterministically wait for new data on α or send the stored data v on γ . In the first
case, the cell stores the new value in y and enters the state CELL2(y,v). The second
case happens when the stored value v is extracted from the cell; then the cell sends
the value v on γ and it becomes empty by switching to the state CELL0. Note that the
operator + represents a nondeterministic choice performed by the agent. However a
particular choice could be forced on a cell by the behaviour of its neighbours.

CELL2(u,v)
def
= βv.CELL1(u)

The cell in state CELL2(u,v) carries two parameters u (the last received value) and v
(the previously stored value). The agent must cooperate with its neighbours to shift
the data to the right. To this aim, the agent communicates the old stored value v to
the right neighbour on β and enters the state CELL1(u).

ENDCELL def
= αz.(CELL1(z) _

^ ENDCELL︸ ︷︷ ︸
a new bottom cell

) + γ$.nil

The state ENDCELL represents the bottom of the stack. An agent in this state can
perform two actions in a nondeterministic way. First, if a new value is received on
α (in order to perform a right-bound shift), then the new data is stored in z and the
agent moves to state CELL1(z). At the same time, a new agent is created, whose
initial state is ENDCELL, which becomes the new bottom cell of the stack. Note
that we want the newly created agent ENDCELL to be able to communicate with
its neighbour CELL1(z) only. We will explain later how this can be achieved, when
giving the exact definition of the linking operation _

^ (see Example 11.3). Informally,
the β and δ channels of CELL1(z) are linked, respectively, to the α and γ channels
of ENDCELL and the communication over them is kept private with respect to the
environment: only the channels α and γ of CELL1(z) will be used to communicate
with neighbouring cells and all the other communications are kept local. The second
alternative is that the agent can send the special symbol $ to the left neighbour cell,
provided it is able to receive this value. This is possible only if the left neighbour
cell is empty (see state CELL0), and after receiving the symbol $ on its channel
δ it becomes the new ENDCELL. Then the present agent concludes its execution,
becoming the inactive process nil.

Notice that ENDCELL cannot send or receive messages on its β and δ channels.
In fact, ENDCELL should possess no such channels. Also, the behaviour of the stack
is correct only if the initial state of the agent is ENDCELL.

Now we will show how the stack works. Let us start from an empty stack. We
have only one cell in the state ENDCELL, whose channels β and δ are made private,
written ENDCELL\β\δ : no neighbour will be linked to the right side of the cell.

Suppose we want to perform a push operation in order to place the value 1 on
the stack. This can be achieved by sending the value 1 on the channel α to the cell
ENDCELL (see Figure 11.1).
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↵

�

ENDCELL

↵1

Fig. 11.1: ENDCELL\β\δ receiving the value 1 on channel α

Once the cell receives the new value it generates a new bottom process ENDCELL
for the stack and changes its state to CELL1(1). The result of this operation is the
configuration shown in Figure 11.2.

↵

�

CELL1(1) ENDCELL

↵3

Fig. 11.2: (CELL1(1) _
^ ENDCELL)\β\δ receiving the value 3 on channel α

When the stack is stabilised we can perform another push operation, say with
value 3. In this case the first cell moves to state CELL2(3,1) in order to perform a
right-bound shift of the previously stored value 1 (see Figure 11.3).

↵

�

ENDCELLCELL2(3, 1)

1

Fig. 11.3: (CELL2(3,1) _
^ ENDCELL)\β\δ before right-shifting the value 1

Then, when the rightmost cell (ENDCELL) receives the value 1 on its channel
α , privately connected to the channel β of the leftmost cell (CELL2(3,1)) via the
linking operation _

^, it will change its state to CELL1(1) and will spawn a new
ENDCELL, while the leftmost cell moves from the state CELL2(3,1) to the state
CELL1(3) (see Figure 11.4). Note that the linking operation is associative.

Now suppose we perform a pop operation, which will return the last value pushed
onto the stack (i.e., 3). The corresponding operation is an output to the environment
(on channel γ) of the leftmost cell. In this case the leftmost cell changes its state
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↵

�

CELL1(1) ENDCELLCELL1(3)

�3

Fig. 11.4: CELL1(3) _
^ CELL1(1) _

^ ENDCELL\β\δ before a pop operation

to CELL0, and waits for a value through its channel δ (privately connected to the
channel γ of the middle cell). The situation is depicted in Figure 11.5.

↵

�

CELL1(1) ENDCELLCELL0

$1

Fig. 11.5: (CELL0
_
^ CELL1(1) _

^ ENDCELL)\β\δ before left-shifting value 1

When the middle cell sends the value 1 to the leftmost cell, it changes its state to
CELL0, and waits for the value sent from the rightmost cell. Then, since the received
value from ENDCELL is $, the middle cell changes its state to ENDCELL, while
the rightmost cell reduces to nil, as illustrated in Figure 11.6 (where the nil agent is
just omitted, because it is the unit of composition).

↵

�

CELL1(1) ENDCELL

Fig. 11.6: (CELL1(1) _
^ ENDCELL _

^ nil)\β\δ

The above example shows that processes can synchronise in pairs, by perform-
ing dual (input/output) operations. In this chapter, we focus on a pure version of
CCS, where we abstract away from the values communicated on channels. The
correspondence with value-passing CCS is briefly discussed in Section 11.3.8.
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11.2 Syntax of CCS

CCS was introduced by Turing Award winner Robin Milner (1934–2010) in the early
1980s. We fix the following notation:

∆ = {α,β , ...}: denotes the set of channels and, by coercion, input actions;
∆ = {α,β , ...}: denotes the set of output actions, with ∆ ∩∆ =∅;
Λ = ∆ ∪∆ : denotes the set of observable actions;
τ 6∈Λ : denotes a distinguished, unobservable action (also called silent).

We extend the “bar” operation to all the elements in Λ by letting α = α for
all α ∈ ∆ . As we have seen in the dynamic stack example, pairs of dual actions
(e.g., α and α) are used to synchronise two processes. The unobservable action τ

denotes a special action that is internal to some agent and that cannot be used for
synchronisation. Moreover we will use the following conventions:

µ ∈Λ ∪{τ} : denotes a generic action;
λ ∈Λ : denotes a generic observable action;
λ ∈Λ : denotes the dual action of λ ;
φ : ∆ → ∆ : denotes a generic permutation of channel names, called a relabelling.

We extend φ to all actions by letting

φ(α)
def
= φ(α) φ(τ)

def
= τ

Now we are ready to present the syntax of CCS.

Definition 11.1 (CCS agents). A CCS agent (also process) is a term generated by
the grammar

p,q ::= x | nil | µ.p | p\α | p[φ ] | p+q | p | q | rec x. p

We briefly comment on the various syntactic elements:

x: represents a process name;
nil: is the empty (inactive) process;
µ.p: denotes a process p prefixed by the action µ ; the process µ.p can execute

µ and become p;
p\α: is a restricted process, making the channel α private to p; the process

p\α allows synchronisations on α that are internal to p, but disallows
external interaction on α;

p[φ ]: is a relabelled process that behaves like p after having renamed its
channels as indicated by φ .

p+q: is a process that can choose nondeterministically to behave like p or q;
once the choice is made, the other alternative is discarded;

p | q: is the process obtained as the parallel composition of p and q; the actions
of p and q can be interleaved and also synchronised;

rec x. p: is a recursively defined process, that binds the occurrences of x in p.
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As usual, we consider only the closed terms of this language, i.e., all processes such
that any process name x always occur under the scope of some recursive definition
for x. We name P the set of closed CCS processes.

11.3 Operational Semantics of CCS

The operational semantics of CCS is defined by a suitable labelled transition system.

Definition 11.2 (Labelled transition system). A labelled transition system (LTS) is
a triple (P,L,→), where P is the set of states of the system, L is the set of labels and

→⊆ P×L×P is the transition relation. We write p1
l−→ p2 for (p1, l, p2) ∈→.

The LTS that defines the operational semantics of CCS has agents as states and
has transitions labelled by actions in Λ ∪{τ}, denoted by µ . Formally, the LTS is
given by (P,Λ ∪{τ},→), where the transition relation→ is the least one generated
by a set of inference rules. The LTS is thus defined by a rule system whose formulas
take the form p1

µ−→ p2, meaning that the process p1 can perform the action µ and
reduce to p2. We call p1

µ−→ p2 a µ-transition of p1.
While the LTS is unique for all CCS processes, when we say “the LTS of a process

p” we mean the restriction of the LTS to consider only the states that are reachable
from p by a sequence of (oriented) transitions. Although a term can be the parallel
composition of many processes, its operational semantics is represented by a single
global state in the LTS. Next we introduce the inference rules for CCS.

11.3.1 Inactive Process

There is no rule for the inactive process nil: it has no outgoing transition.

11.3.2 Action Prefix

There is only one axiom in the rule system and it is related to action prefix.

(Act)
µ.p

µ−→ p

It states that the process µ.p can perform the action µ and reduce to p. For

example, we have transitions α.β .nil α−→ β .nil and β .nil β−→ nil.
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11.3.3 Restriction

If the process p is executed under a restriction ·\α , then it can perform only actions
that do not carry the restricted name α as a label:

(Res)
p

µ−→ q
µ 6= α,α

p\α µ−→ q\α

Note that this restriction does not affect the communication internal to the pro-
cesses, i.e., when µ = τ the move is not blocked by the restriction. For example, the

process (α.nil)\α is deadlock, while (β .nil)\α β−→ nil\α .

11.3.4 Relabelling

Let φ be a permutation of channel names. The µ-transitions of p are renamed to
φ(µ)-transitions by p[φ ]:

(Rel)
p

µ−→ q

p[φ ]
φ(µ)−−−→ q[φ ]

We recall that the silent action cannot be renamed by φ , i.e., φ(τ) = τ for any φ .

For example, if φ(α) = β , then (α.nil)[φ ] β−→ nil[φ ].

11.3.5 Choice

The next pair of rules deals with nondeterministic choice:

(Sum)
p

µ−→ p′

p+q
µ−→ p′

q
µ−→ q′

p+q
µ−→ q′

Process p+ q can choose to behave like either p or q. However, note that the
choice can be performed only when an action is executed, e.g., in order to discard
the alternative q, the process p must be capable of performing some action µ . For
example, if φ(α) = γ , φ(β ) = β and p def

= ((α.nil+β .nil)[φ ]+α.nil)\α we have

p
γ−→ nil[φ ]\α and p

β−→ nil[φ ]\α but not p α−→ nil\α
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11.3.6 Parallel Composition

Also in the case of parallel composition some form of nondeterminism appears.
Unlike the case of sum, where nondeterminism is a characteristic of the modelled
system, here nondeterminism is a characteristic of the semantic style that allows p
and q to interleave their actions in p | q, i.e., nondeterminism is exploited to model
the parallel behaviour of the system:

(Par)
p

µ−→ p′

p | q µ−→ p′ | q
q

µ−→ q′

p | q µ−→ p | q′

The two rules above allow p and q to evolve independently in p | q. There is also
a third rule for parallel composition, which allows processes to perform internal
synchronisations:

(Com) p1
λ−→ p2 q1

λ−→ q2

p1 | q1
τ−→ p2 | q2

The processes p1 and p2 communicate by using the channel λ in complementary
ways. The name of the channel is not shown in the label after the synchronisation but
the action τ is recorded instead.

In general, if p1 and p2 can perform α and α , respectively, then their parallel
composition can perform α , α or τ . When parallel composition is used in combina-
tion with the restriction operator, like in (p1 | p2)\α , then synchronisation on α , if

possible, is forced. For example, the LTS for p def
= (α.nil+β .nil) | (α.nil+γ.nil) is

p

γ &&

α

88

β

��

α

��

τ

##

(α.nil+β .nil) | nil

α

��

β

��
nil | (α.nil+γ.nil)

α &&

γ
88

nil | nil

while the LTS for process q def
= p\α is
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q

γ ''

β

��

τ

$$

((α.nil+β .nil) | nil)\α

β

��
(nil | (α.nil+γ.nil))\α

γ
77

(nil | nil)\α

When comparing the LTSs for p and q, it is evident that the transitions with labels α

and α are not present in the LTS for q. Still the τ-labelled transition q τ−→ (nil | nil)\α
that originated from an internal synchronisation over α is present in the LTS of q.

11.3.7 Recursion

The rule for recursively defined processes is similar to the one seen for HOFL terms:

(Rec)
p[rec x. p/x]

µ−→ q

rec x. p
µ−→ q

The recursive process rec x. p can perform all and only the transitions that the
process p[rec x. p/x] can perform, where p[rec x. p/x] denotes the process obtained
from p by replacing all free occurrences of the process name x with its full recursive
definition rec x. p (of course, the substitution is capture avoiding). For example,
the possible transitions of the recursive process rec x. α.x are the same as those of
(α.x)[rec x. α.x/x] = α.rec x. α.x. Namely, since

α.rec x. α.x α−→ rec x. α.x

is the only transition of α.rec x. α.x, there is exactly one transition

rec x. α.x α−→ rec x. α.x

It is interesting to compare the LTSs for the processes below (see Figure 11.7):

p def
= (rec x. α.x)+(rec x. β .x) q def

= rec x. (α.x+β .x) r def
= rec x. (α.x+β .nil)

In the first case, p can execute either a sequence of only α-transitions or a sequence
of β -transitions. In the second case, q can execute any sequence that involves α- and
β -transitions only. Finally, r admits only sequences of α actions, possibly concluded
by a β action. Note that p and q never terminate, while r may or may not terminate.
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p

α

��

β

��
rec x. α.x

α

ZZ rec x. β .x

β

XX

qα :: βdd r αcc

β

��
nil

Fig. 11.7: The LTSs of three recursively defined processes

Remark 11.1 (Guarded agents). The form of recursion allowed in CCS is very gen-
eral. As is common, we restrict our attention to the class of guarded agents, namely
agents where, for any recursive subterms rec x. p, each free occurrence of x in
p occurs under an action prefix (like in all the examples above). This allows us
to exclude terms like rec x. (x | p) which can lead (in one step) to an unbounded
number of parallel repetitions of the same agent, making the LTS infinitely branching
(see Examples 11.12 and 11.13). Formally, we define the predicate G(p,X) for any
process p and set of process names X as follows:

G(nil,X)
def
= true G(p\α,X) = G(p[φ ],X)

def
= G(p,X)

G(x,X)
def
= x 6∈ X G(p+q,X) = G(p | q,X)

def
= G(p,X)∧G(q,X)

G(µ.p,X)
def
= G(p,∅) G(rec x. p,X)

def
= G(p,X ∪{x})

The predicate G(p,X) is true if and only if (i) every process name in X is either not
free in p or free and prefixed by an action; and (ii) all recursively defined names in p
occur guarded in p.

A (closed) process p is guarded if G(p,∅) holds true. It can be proved that, for
any process p and set of process names X

1. for any process name x, G(p,X ∪{x})⇒ G(p,X), so that, as a particular case,
G(p,X) implies G(p,∅); moreover, G(p,X)⇒ G(p,X ∪{x}) if x does not occur
free in p;

2. guardedness is preserved by substitution, namely, for all processes p1, ..., pn and
process names x1, ...,xn

G(p,X)∧
∧

i∈[1,n]
G(pi,X) ⇒ G(p[p1/x1 , · · · ,pn /xn ],X)

3. guardedness is preserved by transitions, namely, for any process q and action µ:

G(p,X)∧ p
µ−→ q ⇒ G(q,∅).

The proof of items 1 and 2 is by structural induction on p, while the proof of item 3
is by rule induction on p

µ−→ q.
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Example 11.2 (Derivation). We show an example of the use of the derivation rules
we have introduced. Let us take the (guarded) CCS process ((p | q) | r)\α , where

p def
= rec x. (α.x+β .x) q def

= rec x. (α.x+ γ.x) r def
= rec x. α.x.

First, let us focus on the behaviour of the simpler, deterministic agent r. We have

rec x. α.x λ−→ r′ ↖Rec α.(rec x. α.x) λ−→ r′

↖Act, λ=α, r′=rec x. α.x 2

where we have annotated each derivation step with the name of the applied rule.
Thus, r α−→ r and since no other rule is applicable during the above derivation, the
LTS associated with r consists of a single state and one looping arrow with label
α . Correspondingly, the agent is able to perform the action α indefinitely. However,
when embedded in the larger system above, the action α is blocked by the topmost
restriction ·\α . Therefore, the only opportunity for r to execute a transition is by
synchronising on channel α with either one or the other of the two (nondeterministic)
agents p and q. In fact the synchronisation on α produces an action τ which is not
blocked by ·\α . Note that p and q are also available to interact with some external
agent on other non-restricted channels (β or γ).

By using the rules of the operational semantics of CCS we have, e.g.,

((p | q) | r)\α µ−→ s ↖Res, s=s′\α (p | q) | r µ−→ s′, µ 6= α,α

↖Com, µ=τ, s′=s′′ | r1
p | q λ−→ s′′, r λ−→ r1

↖Par, s′′=p | q1
q λ−→ q1, r λ−→ r1

↖Rec α.q+ γ.q λ−→ q1, r λ−→ r1

↖Sum α.q λ−→ q1, r λ−→ r1

↖Act, λ=α, q1=q r α−→ r1

↖Rec α.r α−→ r1

↖Act, r1=r �

from which we derive
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Fig. 11.8: Graphically illustration of the concatenation operator p _
^ q

r1 = r = rec x. α.x

q1 = q = rec x. α.x+ γ.x

s′′ = p | q1 = (rec x. α.x+β .x) | rec x. α.x+ γ.x

s′ = s′′ | r1 = ((rec x. α.x+β .x) | (rec x. α.x+ γ.x)) | rec x. α.x

s = s′\α = (((rec x. α.x+β .x) | (rec x. α.x+ γ.x)) | rec x. α.x)\α
µ = τ

and thus
((p | q) | r)\α τ−→ ((p | q) | r)\α

Note that during the derivation we had to choose several times between different
rules which could have been applied; while in general it may happen that wrong
choices can lead to dead ends, our choices have been made to complete the derivation
satisfactorily, avoiding any backtracking. Of course other transitions are possible for
the agent ((p | q) | r)\α: we leave it as an exercise to identify all of them and draw
the complete LTS (see Problem 11.1).

Example 11.3 (Dynamic stack: linking operator). Let us consider again the extensible
stack from Example 11.1. We show how to formalise in CCS the linking operator _

^.
We need two new channels ϑ and η , which will be private to the concatenated cells.
Then, we let

p _
^ q = (p[φβ ,δ ] | q[φα,γ ])\ϑ\η

where φβ ,δ is the relabelling that switches β with ϑ , δ with η and is the identity
otherwise, while φα,γ switches α with ϑ , γ with η and is the identity otherwise.
Notably, ϑ and η are restricted, so that their scope is kept local to p and q, avoiding
any conflict on channel names from the outside. For example, messages sent on β

by p are redirected to ϑ and must be received by q, which views ϑ as α . Instead,
messages sent on β by q are not redirected to ϑ and will appear as messages sent on
β by the whole process p _

^ q (see Figure 11.8).



11.3 Operational Semantics of CCS 235

11.3.8 CCS with Value Passing

Example 11.1 considers I/O operations where values can be received and transmitted.
This would correspond to extending the syntax of processes to allow action prefixes
like α(x).p, where p can use the value x received on channel α , and αv.p, where
v is the value sent on channel α . Note that, in α(x).p, the symbol x is bound with
scope p. Assuming a set of possible values V is fixed, the corresponding operational
semantics rules are

(In)
v ∈V

α(x).p αv−→ p[v/x]
(Out)

αv.p αv−→ p

However, when the set V is finite, we can encode the behaviour of α(x).p and αv.p
just by introducing as many copies αv of each channel α as there are possible values
v ∈V . If V = {v1, ...,vn} then

• an output αvi.p is represented by the process αvi .p
• an input α(x).p is represented by the process

αv1 .p[
v1/x]+αv2 .p[

v2/x]+ ...+αvn .p[
vn/x]

We can also represent quite easily an input followed by a test (for equality) on
the received value, like the one used in the encoding of CELL0 in the dynamic stack
example: a process such as

α(x). if x = vi then p else q

can be represented by the CCS process

αv1 .q[
v1/x]+ ...+αvi−1 .q[

vi−1/x]+αvi .p[
vi/x]+αvi+1 .q[

vi+1/x]+ ...+αvn .q[
vn/x]

Example 11.4. Suppose that V = {true, false} is the set of booleans. Then a process
that waits to receive true on the channel α before executing p can be written as

rec x. (αtrue.p+αfalse.x)

11.3.9 Recursive Declarations and the Recursion Operator

In Example 11.1, we have also used recursive declarations, one for each possible
state of the cell. They can be expressed in CCS using the recursion operator rec. In
general, suppose we are given a series of recursive declarations, of the form
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X1

def
= p1

X2
def
= p2
· · ·

Xn
def
= pn

where the symbols X1, ...,Xn can appear as constants in each of the terms p1, ..., pn.
For any i ∈ {1, ...,n}, let

qi
def
= rec Xi. pi

be the process where all occurrences of Xi in pi are bound by the recursive operator
(while the instances of X j occur freely if i 6= j). Then, we can let

rn
def
= qn

rn−1
def
= qn−1[

rn/Xn ]

· · ·
ri

def
= qi[

rn/Xn ]...[
ri+1/Xi+1 ]

· · ·
r1

def
= q1[

rn/Xn ]...[
r2/X2 ]

so that in ri all occurrences of X j occur under a recursion operator rec X j if j ≥ i.
Then r1 is a closed CCS process that corresponds to X1. If we switch the order in
which the recursive declarations are listed, the same procedure can be applied to find
CCS processes that correspond to the other symbols X2, ...,Xn.

Example 11.5 (From recursive declarations to recursive processes). For example,
suppose we are given the recursive declarations

X1
def
= α.X2 X2

def
= β .X1 + γ.X3 X3

def
= δ .X2

Then we have

q1
def
= rec X1. α.X2 q2

def
= rec X2. (β .X1 + γ.X3) q3

def
= rec X3. δ .X2

From which we derive

r3
def
= q3 = rec X3. δ .X2

r2
def
= q2[

r3/X3 ] = rec X2. (β .X1 + γ.rec X3. δ .X2)

r1
def
= q1[

r3/X3 ][
r2/X2 ] = rec X1. α.rec X2. (β .X1 + γ.rec X3. δ .X2)
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11.4 Abstract Semantics of CCS

In the previous section we have defined a mapping from CCS agents to LTSs, i.e., to
a special class of labelled graphs. It is easy to see that such an operational semantics
is much more concrete and detailed than the semantics studied for IMP and HOFL.
For example, since the states of the LTS are named by agents it is evident that two
syntactically different processes like p | q and q | p are associated with different
graphs, even if intuitively one would expect that they exhibit the same behaviour.
Analogously for p+q and q+ p or for p+nil and p. Thus it is important to find a
good notion of equivalence, able to provide a more abstract semantics for CCS. As
for the denotational semantics of IMP and HOFL, an abstract semantics defined up
to equivalence should abstract away from the syntax and execution details, focusing
on some external, visible behaviour. To this aim we can focus on the LTSs associated
with agents, disregarding the identity of agents.

In this section, we first show that neither graph isomorphism nor trace equivalence
offers fully satisfactory abstract semantics for CCS. Next, we introduce a more ap-
propriate abstract semantics of CCS by defining a relation, called strong bisimilarity,
that captures the ability of processes to simulate each other.

Another important aspect to be taken into account is compositionality, i.e., the
ability to replace any process with an equivalent one inside any context without
changing the semantics. Formally, this amounts to defining equivalences that are
preserved by all the operators of the algebra: they are called congruences. We discuss
compositionality issues in Section 11.5.

11.4.1 Graph Isomorphism

It is quite obvious to require that two agents are equivalent if their (LTSs) graphs are
isomorphic. Recall that two labelled graphs are isomorphic if there exists a bijection
f between the nodes of the graphs that preserves the graph structure, i.e., such that
v α−→ v′ iff f (v) α−→ f (v′).

Example 11.6 (Isomorphic agents). Let us consider the agents α.nil | β .nil and
α.β .nil+β .α.nil. Their LTSs are as follows:

α.nil | β .nil
α

{{

β

##

α.β .nil+β .α.nil
α

{{

β

##
nil | β .nil

β ##

α.nil | nil

α{{

β .nil

β ##

α.nil

α

{{
nil | nil nil
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The two graphs are isomorphic, as shown by the bijective correspondence repre-
sented with dotted lines, thus the two agents should be considered equivalent. This
result is surprising, since they have rather different structures. In fact, the example
shows that concurrency can be reduced to nondeterminism by graph isomorphism.
This is due to the interleaving of the actions performed by processes that are com-
posed in parallel, which is a peculiar characteristic of the operational semantics
which we have presented.

Graph isomorphism is a very simple and natural equivalence relation, but still leads
to an abstract semantics that is too concrete, i.e., graph isomorphism distinguishes
too much. We show this fact in the following examples.

Example 11.7 (Non-isomorphic agents). Let us consider the (guarded) recursive
agents rec x. α.x, rec x. α.α.x and α.rec x. α.x, whose LTSs are in Figure 11.9:

rec x. α.x

α

DD rec x. α.α.x

α

!!
α.rec x. α.α.x

α

`` α.rec x. α.x

α

��
rec x. α.x

α

DD

Fig. 11.9: Three non-isomorphic agents

The three graphs are not isomorphic, but it is hardly possible to distinguish
between the agents according to their behaviour: they all are able to execute an
infinite sequence of α-transitions.

Example 11.8 (Buffers). Let us denote by Bn
k a buffer of capacity n of which k

positions are busy. For example, to represent a buffer of capacity 1 in CCS one can
let (using recursive definitions)

B1
0

def
= in.B1

1 B1
1

def
= out.B1

0

The corresponding LTS is

B1
0

in
55 B1

1

outuu

Analogously, for a buffer of capacity 2, one can let

B2
0

def
= in.B2

1 B2
1

def
= out.B2

0 + in.B2
2 B2

2
def
= out.B2

1

Another possibility for obtaining an (empty) buffer of capacity 2 is to use two (empty)
buffers of capacity 1 composed in parallel: B1

0 | B1
0. However the LTSs of B2

0 and
B1

0 | B1
0 are not isomorphic, because they have a different number of states:
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B2
0

in
""
B2

1

in
""

out

bb

B2
2

out

bb

B1
0 | B1

0
in





in

��
B1

1 | B1
0

in
//

out

88

B1
0 | B1

1

in
oo

out

ff

B1
1 | B1

1

out
ff

out
88

The LTS of B2
0 offers a minimal realisation of the behaviour of the buffer: the three

states B2
0, B2

1 and B2
2 cannot be identified, because they exhibit different behaviours

(e.g., B2
2 cannot perform an in action, unlike B2

1 and B2
0, while B2

0 can perform two
in actions in a row, unlike B2

1 and B2
2). Instead, the LTS of B1

0 | B1
0 has two different

states that should be considered equivalent, namely B1
1 | B1

0 and B1
0 | B1

1 (in our case,
it does not matter which position of the buffer is occupied).

11.4.2 Trace Equivalence

A second approach, called trace equivalence, observes the set of traces of an agent,
namely the set of sequences of actions labelling all paths in its LTS. Trace equivalence
is analogous to language equivalence for ordinary automata, except for the fact that
in CCS there are no accepting states.

Formally, a finite trace of a process p is a sequence of actions µ1 · · ·µk (for k ≥ 0)
such that there exists a sequence of transitions

p = p0
µ1−→ p1

µ2−→ ·· · µk−1−−−→ pk−1
µk−→ pk

for some processes p1, ..., pk. Two agents are (finite) trace equivalent if they have the
same set of possible (finite) traces. Note that the set of traces associated with one
process p is prefix closed, in the sense that if the trace µ1 · · ·µk belongs to the set
of traces of p, then any of its prefixes µ1 · · ·µi with i≤ k also belongs to the set of
traces of p.2 For example, the empty trace ε belongs to the semantics of any process.

Trace equivalence is strictly coarser than equivalence based on graph isomorphism,
since isomorphic graphs have the same traces. Conversely, Examples 11.7 and 11.8
show agents that are trace equivalent but whose graphs are not isomorphic. The
following example shows that trace equivalence is too coarse: it is not able to capture
the choice points within agent behaviour. In the example we exploit the notion of a
context.

Definition 11.3 (Context). A context is a term with a hole which can be filled by
inserting any other term of our language.

2 A variant of trace equivalence, called completed trace semantics, is not prefix closed and will be
discussed in Example 11.15.
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We write C[·] to indicate a context and C[p] to indicate the context C[·] whose
hole is filled with p.

Example 11.9. Let us consider the following agents:

p def
= α.(β .nil+γ.nil) q def

= α.β .nil+α.γ.nil

Their LTSs are as follows:

α.(β .nil+γ.nil)

α

��
β .nil+γ.nil

β

  
γ

~~
nil

α.β .nil+α.γ.nil
α

{{

α

##
β .nil

β ##

γ.nil

γ
{{

nil

The agents p and q are trace equivalent: their set of traces is {ε,α,αβ ,αγ}.
However the agents make their choices at different points in time. In the second
agent q the choice between β and γ is made when the first transition is executed, by
selecting one of the two outbound α-transitions. In the first agent p, on the contrary,
the choice is made at a later time, after the execution of the unique α-transition.

The difference is evident if we consider, e.g., an agent

r def
= α.β .δ .nil

running in parallel with p or with q, with actions α , β and γ restricted on top:

(p | r)\α\β\γ (q | r)\α\β\γ.

The agent p is always able to carry out the complete interaction with r, because
after the synchronisation on α it is ready to synchronise on β ; vice versa, the agent q
is only able to carry out the complete interaction with r if the left choice is performed
at the time of the first interaction on α , as otherwise γ.nil and β .δ .nil cannot interact.
Formally, if we consider the context

C[·] = (· | α.β .δ .nil)\α\β\γ

we have that C[p] and C[q] are trace equivalent, but C[q] can deadlock before execut-
ing δ , while this is not the case for C[p]. Consider how embarrassing the difference
could be if α meant for a computer to ask the user whether a file should be deleted,
and β ,γ were the user’s yes/no answer: p would behave as expected, while q could
decide to delete the file in the first place, and then deadlock if the user decides
otherwise. As another example, assume that p and q are possible alternatives for
the control of a vending machine, where α models the insertion of a coin and β

and γ model the supply of a cup of coffee or a cup of tea: p would let the user
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choose between coffee and tea, while q would choose for the user. We will consider
processes p and q again in Example 11.15, when discussing compositionality issues.

Given all the above, we can argue that neither graph isomorphism nor trace
equivalence is a good candidate for our behavioural equivalence relation. Still, it
is obvious that 1) isomorphic agents must be retained as equivalent; 2) equivalent
agents must be trace equivalent. Thus, our candidate equivalence relation must be
situated in between graph isomorphism and trace equivalence.

11.4.3 Strong Bisimilarity

In this section we introduce a class of relations between agents called strong bisim-
ulations and we define a behavioural equivalence relation between agents, called
strong bisimilarity, as the largest strong bisimulation. This equivalence relation is
intended to identify only those agents which intuitively have the same behaviour.

Let us start with an example that illustrates how bisimulation works.

Example 11.10 (Bisimulation game). In this example we use game theory in order
to show that the agents of Example 11.9 should not be considered behaviourally
equivalent. Imagine that two opposing players are arguing about whether or not a
system satisfies a given property. One of them, the attacker, argues that the system
does not satisfy the property. The other player, the defender, believes that the system
satisfies the property. If the attacker has a winning strategy this means that the system
does not satisfy the property. Otherwise, the defender wins, meaning that the system
satisfies the property.

The game is turn based and, at any turn, we let the attacker move first and
the defender respond. In the case of bisimulation, the system is composed of two
processes p and q and the attacker wants to prove that they are not equivalent, while
the defender wants to convince the opponent that p and q are equivalent. Let Alice
be the attacker and Bob the defender. The rules of the game are very simple.

Alice starts the game. At each turn

• Alice chooses one of the processes and executes one of its outgoing transitions.
• Bob must then execute an outgoing transition of the other process, matching the

action label of the transition chosen by Alice.
• At the next turn, if any, the game will start again from the target processes of the

two transitions selected by Alice and Bob.

If Alice cannot find a move, then Bob wins, since this means that p and q are both
deadlock, and thus obviously equivalent. Alice wins if she can make a move that Bob
cannot imitate; or if she has a move that, no matter what is the answer by Bob, will
lead to a situation where she can make a move that Bob cannot imitate; and so on
for any number of moves. Bob wins if Alice has no such (finite) strategy. Note that
the game does not necessarily terminate: also in this case Bob wins, because Alice
cannot disprove that p and q are equivalent.
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From Example 11.9, let us take

p def
= α.(β .nil+γ.nil) q def

= α.β .nil+α.γ.nil .

We show that Alice has a winning strategy. Alice starts by choosing p and by
executing its unique α-transition p α−→ β .nil+γ.nil. Then, Bob can choose one of
the two α-transitions leaving from q. Suppose that Bob chooses the α-transition q α−→
β .nil (but the case where Bob chooses the other transition leads to the same result
of the game). So the processes for the next turn of the game are β .nil+γ.nil and
β .nil. At the second turn, Alice chooses the process β .nil+γ.nil and the transition
β .nil+γ.nil γ−→ nil, and Bob cannot simulate this move from β .nil. Since Alice has
a winning, two-move strategy, the two agents are not equivalent.

Now we define the same relation in a more formal way, as originally introduced
by Robin Milner. It is important to notice that the definition is not specific to CCS; it
applies to a generic LTS (P,L,→). The labelled transition systems whose states are
CCS agents are just a special instance. Below, for R⊆P×P a binary relation on
agents, we use the infix notation s1 R s2 to mean (s1,s2) ∈ R.

Definition 11.4 (Strong bisimulation). Let R be a binary relation on the set of states
of an LTS; then it is a strong bisimulation if

∀s1,s2. s1 R s2⇒
{
∀µ,s′1. s1

µ−→ s′1 implies ∃s′2. s2
µ−→ s′2 and s′1 R s′2; and

∀µ,s′2. s2
µ−→ s′2 implies ∃s′1. s1

µ−→ s′1 and s′1 R s′2

Trivially, the empty relation is a strong bisimulation and it is easy to check that
the identity relation

Id def
= {(p, p) | p ∈P}

is a strong bisimulation. Interestingly, graph isomorphism defines a strong bisimula-
tion and the union R1∪R2 of two strong bisimulation relations R1 and R2 is also a
strong bisimulation relation. The inverse R−1 = {(s2,s1) | (s1,s2) ∈ R} of a strong
bisimulation R is also a strong bisimulation. Moreover, given the composition of
relations defined by

R1 ◦R2
def
= {(p,q) | ∃r. p R1 r∧ r R2 q}

it can be shown that the relation R1 ◦R2 is a strong bisimulation whenever R1 and R2
are such (see Problem 11.4).

Definition 11.5 (Strong bisimilarity'). Let s1 and s2 be two states of an LTS, then
they are said to be strongly bisimilar, written s1 ' s2, if and only if there exists a
strong bisimulation R such that s1 R s2.

The relation ' is called strong bisimilarity and is defined as follows:

' def
=

⋃
R is a strong bisimulation

R
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Remark 11.2. In the literature, strong bisimilarity is often denoted by ∼. We use the
symbol ' to make explicit that it is a congruence relation (see Section 11.5).

To prove that two processes p and q are strongly bisimilar it is enough to define a
strong bisimulation that contains the pair (p,q).

Example 11.11. Examples 11.7 and 11.8 show agents which are trace equivalent but
whose graphs are not isomorphic. Here we show that they are also strongly bisimilar.
In the case of the agents in Examples 11.7, let us consider the relations

R1
def
= {(rec x. α.x,rec x. α.α.x) , (rec x. α.x,α.rec x. α.α.x)}

R2
def
= {(rec x. α.x,α.rec x. α.x) , (rec x. α.x,rec x. α.x)}

In the case of the agents in Example 11.8, let us consider the relation

R def
= {(B2

0,B
1
0 | B1

0) , (B
2
1,B

1
1 | B1

0) , (B
2
1,B

1
0 | B1

1) , (B
2
2,B

1
1 | B1

1)}

We invite the reader to check that they are indeed strong bisimulations.

Theorem 11.1 proves that strong bisimilarity ' is an equivalence relation on CCS
processes. Below we recall the definition of equivalence relation.

Definition 11.6 (Equivalence relation). Let ≡ be a binary relation on a set X , then
we say that it is an equivalence relation if it has the following properties:

reflexivity: ∀x ∈ X . x≡ x;
symmetry: ∀x,y ∈ X . x≡ y⇒ y≡ x.;
transitivity: ∀x,y,z ∈ X . x≡ y∧ y≡ z⇒ x≡ z.

The equivalence induced by a relation R is the least equivalence that contains R: it
is denoted by ≡R and is defined by the inference rules below

x R y
x≡R y x≡R x

x≡R y
y≡R x

x≡R y y≡R z
x≡R z

Note that, in general, a strong bisimulation R is not necessarily reflexive, symmet-
ric or transitive (see, e.g., Example 11.11). However, given any strong bisimulation
R, its induced equivalence relation ≡R is also a strong bisimulation.

Theorem 11.1. Strong bisimilarity ' is an equivalence relation.

We omit the proof of Theorem 11.1: it is based on the above-mentioned properties
of strong bisimulations (see Problem 11.5).

Theorem 11.2. Strong bisimilarity ' is the largest strong bisimulation.

Proof. We need just to prove that ' is a strong bisimulation: by definition it contains
any other strong bisimulation. By Theorem 11.1, we know that ' is symmetric, so it
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is sufficient to prove that if s1 ' s2 and s1
µ−→ s′1 then we can find s′2 such that s2

µ−→ s′2
and s′1 ' s′2. Let s1 ' s2 and s1

µ−→ s′1. Since s1 ' s2, by definition of ', there exists a
strong bisimulation R such that s1 R s2. Therefore, there is s′2 such that s2

µ−→ s′2 and
s′1 R s′2. Since R ⊆' we have s′1 ' s′2. ut

We can then give a precise characterisation of strong bisimilarity.

Theorem 11.3. For any states s1 and s2 we have

s1 ' s2 ⇔
{
∀µ,s′1. s1

µ−→ s′1 implies ∃s′2. s2
µ−→ s′2 and s′1 ' s′2; and

∀µ,s′2. s2
µ−→ s′2 implies ∃s′1. s1

µ−→ s′1 and s′1 ' s′2

Proof. One implication (⇒) follows directly from Theorem 11.2.
The other implication (⇐) is sketched here. Take s1 and s2 such that

∀µ,s′1. if s1
µ−→ s′1 then ∃s′2 such that s2

µ−→ s′2 and s′1 ' s′2
∀µ,s′2. if s2

µ−→ s′2 then ∃s′1 such that s1
µ−→ s′1 and s′1 ' s′2

We want to show that s1 ' s2. This is readily done by showing that the relation

R def
= {(s1,s2)}∪ '

is a strong bisimulation. By Theorem 11.2, all pairs in ' satisfy the requirement for
strong bisimulation. It is immediate to check that also the pair (s1,s2) ∈ R satisfies
the condition. ut

Checking that a relation is a strong bisimulation requires checking that all the
pairs in it satisfy the condition in Definition 11.4. So it is very convenient to exhibit
relations that are as small as possible, e.g., we can avoid reflexive, symmetric and
transitive pairs, unless needed.

In the following, when we consider relations that are equivalences, instead of
listing all pairs of processes in the relation, we will list just the induced equivalence
classes for brevity, i.e., we will work with quotient sets.

Definition 11.7 (Equivalence classes and quotient sets). Given an equivalence re-
lation ≡ on X and an element x ∈ X we call the equivalence class of x the subset
[x]≡ ⊆ X defined as follows:

[x]≡
def
= {y ∈ X | x≡ y}

The set X/≡ containing all the equivalence classes generated by a relation ≡ on the
set X is called the quotient set.
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R0 = P ⇥ P

R1 = �(R0)

R2 = �(R1)

Rn = �(Rn)

;

✓
v

bisimilarity

bisimulations�(R) v R

Fig. 11.10: The CPO⊥ (℘(P×P),v)

11.4.3.1 Strong Bisimilarity as a Fixpoint

Now we re-use fixpoint theory, which we have introduced in the previous chapters,
in order to define strong bisimilarity in a more effective way. Using fixpoint theory
we will construct, by successive approximations, the coarsest (largest, i.e.. that
distinguishes as little as possible) strong bisimulation between the states of an LTS.

As usual, we define the CPO⊥ on which the approximation function works. The
CPO⊥ is defined on the powerset ℘(P ×P) of pairs of CCS processes, i.e., the
set of all relations on P . We know that, for any set S, the structure (℘(S),⊆) is a
CPO⊥, but it is not exactly the one we are going to use.

Then we define a monotone function Φ that maps relations to relations and such
that any strong bisimulation is a pre-fixpoint of Φ. However we would like to take the
largest relation, not the least one, because strong bisimilarity distinguishes as little as
possible. Therefore, we need a CPO⊥ in which a set with more pairs is considered
“smaller” than one with fewer pairs. This way, we can start from the coarsest relation,
which considers all the states equivalent and, by using the approximation function,
we can compute the relation that identifies only strongly bisimilar agents.

We define the order relation v on ℘(P×P) by letting

Rv R′ ⇔ R′ ⊆ R

Notably, the bottom element is not the empty relation, but the universal relation
P×P . The resulting CPO⊥ (℘(P×P),v) is represented in Figure 11.10.

Now we define the transformation function Φ :℘(P×P)→℘(P×P):
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p Φ(R) q def
=

{
∀µ, p′. p

µ−→ p′ implies ∃q′. q
µ−→ q′ and p′ R q′; and

∀µ,q′. q
µ−→ q′ implies ∃p′. p

µ−→ p′ and p′ R q′

Note that Φ maps relations to relations.

Lemma 11.1 (Strong bisimulation as a pre-fixpoint). Let R be a relation in
℘(P×P). It is a strong bisimulation if and only if it is a pre-fixpoint of Φ, i.e., if
and only if Φ(R)v R (or equivalently, R⊆Φ(R)).

Proof. Immediate, by the definition of strong bisimulation. ut

It follows from Lemma 11.1 that an alternative definition of strong bisimilarity is

' def
=

⋃
Φ(R)vR

R

Theorem 11.4. Strong bisimilarity is the least fixpoint of Φ.

Proof. By Theorem 11.3 it follows that strong bisimilarity is a fixpoint of Φ. Then,
the thesis follows immediately by Lemma 11.1 and by the fact that strong bisimilarity
is the largest strong bisimulation. ut

We would like to exploit the fixpoint theorem to compute strong bisimilarity. All
we need to check is that Φ is monotone and continuous.

Theorem 11.5 (Φ is monotone). The function Φ is monotone.

Proof. For all relations R1,R2 ∈℘(P×P), we need to prove that

R1 v R2 ⇒ Φ(R1)vΦ(R2)

Assume R1 v R2, i.e., R2 ⊆ R1. We want to prove that Φ(R1) v Φ(R2), i.e., that
Φ(R2)⊆Φ(R1). Suppose s1 Φ(R2) s2; we want to show that s1 Φ(R1) s2. Take µ,s′1
such that s1

µ−→ s′1. Since s1 Φ(R2) s2, there exists s′2 such that s2
µ−→ s′2 and s′1 R2 s′2.

But since R2 ⊆ R1, we have s′1 R1 s′2. Analogously for the case when s2
µ−→ s′2. ut

Unfortunately, the function Φ is not continuous in general, as there are pathologi-
cal processes that show that the limit of the chain {Φn(P×P)}n∈N is not a strong
bisimulation. As a consequence, we cannot directly apply Kleene’s fixpoint theorem.

Example 11.12. To see an example of CCS processes p and q that are not strongly
bisimilar but that are related by all relations in the chain {Φn(P ×P)}n∈N, the
idea is the following. For simplicity let us focus on processes that can only perform
τ-transitions. Let r def

= rec x. τ.x; it can only execute infinitely many τ-transitions.
Now, for n ∈ N, let pn

def
= τ....τ︸ ︷︷ ︸

n times

.nil be the process that can execute n consecutive



11.4 Abstract Semantics of CCS 247

τ-transitions. Obviously r and pn are not strongly bisimilar for any n. Then, we take
as p a process that can choose between infinitely many alternatives, each choice
leading to the execution of finitely many τ-transitions. Informally,

p = p1 + p2 + ...+ pn + ...

Finally, we take q = p+ r. Clearly p and q are not strongly bisimilar, because, in the
bisimulation game, Alice the attacker has a winning strategy: she chooses to execute
q τ−→ r, then Bob the defender can only reply by executing a transition of the form
p τ−→ pn for some n ∈ N, and we know that r 6' pn. Of course, infinite summations
are not available in the syntax of CCS. However we can define a recursive process
that exhibits the same behaviour as p. Concretely, we let φ be a permutation that
switches α with β and take p = (p′ | α.nil)\α , where

p′ def
= rec X . ((X [φ ] | β .α.nil)\β + α.nil)

The process p′ can execute any sequence of τ-transitions concluded by an α-
transition, but when performing the first transition it is left with the possibility
to execute as many transitions as the number of times the recursive definition has
been unfolded. To see this, observe that clearly p′ α−→ nil. Therefore

p′ λ−→ s ↖∗Rec, Sum (p′[φ ] | β .α.nil)\β λ−→ s

↖Res, s=s1\β p′[φ ] | β .α.nil λ−→ s1, λ 6= β ,β

↖Com, λ=τ, s1=s2|s3
p′[φ ]

λ1−→ s2, β .α.nil λ1−→ s3

↖Rel, λ1=φ(λ2), s2=s4[φ ]
p′

λ2−→ s4, β .α.nil
φ(λ2)−−−→ s3

↖∗
λ2=α, s4=nil β .α.nil β−→ s3

↖Act, s3=α.nil �

That is p′ τ−→ (nil[φ ]|α.nil)\β α−→ (nil[φ ]|nil)\β . Then, we have

p′ λ−→ s ↖∗Rec, Sum, Res, s=s1\β p′[φ ] | β .α.nil λ−→ s1, λ 6= β ,β

↖Par, s1=s2|β .α.nil p′[φ ] λ−→ s2, λ 6= β ,β

↖Rel, λ=φ(λ1) s2=s3[φ ]
p′

λ1−→ s3, φ(λ1) 6= β ,β

↖∗
λ1=τ , s3=(nil[φ ]|α.nil)\β �

So p′ τ−→ (((nil[φ ]|α.nil)\β )[φ ]|β .α.nil)\β τ−→ (((nil[φ ]|nil)\β )[φ ]|α.nil)\β α−→
(((nil[φ ]|nil)\β )[φ ]|nil)\β , and so on.

Now, for any n ∈ N, let 'n
def
= Φn(P ×P). By definition we have that '0=

P×P and'n+1=Φ('n) for any n∈N. It can be proved by mathematical induction
on n ∈ N that pn 'n r and that for any s ∈P it holds that s 'n s. Now we prove
that p'n q for any n ∈ N. The proof is by mathematical induction on n. The base
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case follows immediately since '0
def
= P×P . For the inductive case, we want to

prove that p 'n+1 q. We observe that any transition p τ−→ pn of p can be directly
simulated by the corresponding move q τ−→ pn of q (and vice versa). The interesting
case is when we consider the transition q τ−→ r of q. Then, p can simulate the move
by executing the transition p τ−→ pn, as we know that pn 'n r. Hence p Φ('n) q, i.e.,
p'n+1 q.

Let P f ⊆P denote the set of finitely branching processes.

Theorem 11.6 (Strong bisimilarity as the least fixpoint). Let us consider only
relations over finitely branching processes. Then the function Φ is continuous and

'=
⊔

n∈N
Φ

n(P f ×P f )

Proof. To prove that Φ is continuous, we need to prove that for any chain {Rn}n∈N
of relations over finitely branching processes

Φ

(⊔
n∈N

Rn

)
=
⊔

n∈N
Φ(Rn)

Note that, in the CPO⊥ (℘(P f ×P f ),v), the least upper bound
⊔

n∈NRn of a chain
of relations is obtained by taking the intersection of all relations in the chain, not
their union. We prove the two inclusions separately.

⊆: Take (p,q) ∈ Φ(
⊔

n∈NRn); we want to prove that (p,q) ∈ ⊔n∈NΦ(Rn). This
amounts to proving that ∀n ∈ N. (p,q) ∈ Φ(Rn). Take a generic k ∈ N. We
want to prove that (p,q) ∈Φ(Rk). Let p

µ−→ p′ of p. We want to find a transition
q

µ−→ q′ of q such that (p′,q′) ∈ Rk. Since (p,q) ∈Φ(
⊔

n∈NRn), we know that
there exists a transition q

µ−→ q′ of q such that (p′,q′) ∈ ⊔n∈NRn. Therefore
(p′,q′) ∈ Rk. The case when q moves is analogous.

⊇: Take (p,q) ∈⊔n∈NΦ(Rn), i.e., ∀n ∈ N. (p,q) ∈Φ(Rn); we want to prove that
(p,q) ∈ Φ(

⊔
n∈NRn). Take any transition p

µ−→ p′ of p. We want to find a
transition q

µ−→ q′ of q such that (p′,q′) ∈⊔n∈NRn. This amounts to requiring
that ∀n ∈ N. (p′,q′) ∈ Rn. Since ∀n ∈ N. (p,q) ∈ Φ(Rn), we know that for
any n ∈ N there exists a transition q

µ−→ qn such that (p′,qn) ∈ Rn. Moreover,
since {Rn}n∈N is a chain, then (p′,qn) ∈ Rk for any k ≤ n. Since q is finitely
branching, the set {q′ | q

µ−→ q′} is finite. Therefore there is some index m ∈ N
such that the set {n | qn = qm} is infinite, i.e., such that (p′,qm) ∈ Rn for all
n ∈ N. We take q′ = qm and we are done. The case when q moves is analogous.

The second part of the theorem, the one about ', follows by continuity of Φ, by
Kleene’s fixpoint Theorem 5.6 and Theorem 11.4. ut

The problem with the processes considered in Examples 11.12 and 11.13 is that
they are not guarded (see Remark 11.1), i.e. they have recursively defined names that
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occur unguarded (not nested under some action prefix) in the body of the recursive
definition. The following lemma ensures that the LTS of any guarded term is finitely
branching and we know already from Remark 11.1 that all states reachable from
guarded processes are also guarded. As a corollary, strong bisimilarity of two guarded
processes can be studied by computing the least fixpoint as in Theorem 11.6.

Lemma 11.2 (Guarded processes are finitely branching). Let p be a guarded
process. Then, for any action µ the set {q | p

µ−→ q} is finite.

Proof. We want to prove that G(p,∅) implies that the set {q | p
µ−→ q} is finite.

We prove the stronger property that for any finite set X = {x1, ...,xn} of process
names and processes p1, ..., pn, then G(p,X)∧∧i∈[1,n] G(pi,X) implies that the set

{q | p[p1/x1 , ...,
pn /xn ]

µ−→ q} is finite. The proof is by structural induction on p. For
brevity, let σ denote the substitution [p1/x1 , ...,

pn /xn ]. We only show a few cases.

nil: The case where p = nil is trivial as nilσ = nil and {q | nil µ−→ q}=∅.
var: If p = x, then there are two possibilities. If x ∈ X , then the premise

G(x,X) is falsified and therefore the implication holds trivially. If x 6∈ X
then xσ = x and {q | x

µ−→ q}=∅.
prefix: If p = µ.p′, then {q | (µ.p′)σ µ−→ q}= {p′σ} is a singleton.
restriction: If p = p′\α such that G(p′,X), then there are two cases. If µ ∈ {α,α}

then {q | (p′\α)σ
µ−→ q}=∅. Otherwise the set

{q | (p′\α)σ
µ−→ q}= {q′\α | p′σ

µ−→ q′}

is finite because {q′ | p′σ
µ−→ q′} is finite by the inductive hypothesis.

sum: If p = p′0 + p′1 such that G(p′0,X) and G(p′1,X), then the set

{q | (p′0 + p′1)σ
µ−→ q}= {q′0 | p′0σ

µ−→ q′0}∪{q′1 | p′1σ
µ−→ q′1}

is finite because the sets {q′0 | p′0σ
µ−→ q′0} and {q′1 | p′1σ

µ−→ q′1} are
finite by the inductive hypothesis.

recursion: If p = rec x. p′ such that G(p′,X ∪{x}),3 then the set

{q | (rec x. p′)σ
µ−→ q}= {q | p′σ [rec x. p′/x]

µ−→ q}

is finite by the inductive hypothesis. ut

Example 11.13 (Infinitely branching process). Let us consider the recursive agent

p def
= rec x. (x | α.nil)

3 Without loss of generality, we can assume that x 6∈ X and that x does not appear free in any pi, as
otherwise we α-rename x in p′. Then, for any i ∈ [1,n] we have G(pi,X ∪{x}) (see Remark 11.1).
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The agent p is not guarded, because the occurrence of x in the body of the recursive
process is not prefixed by an action: G(p,∅) = G(x | α.nil,{x}) = G(x,{x})∧
G(α.nil,{x}) = x 6∈ {x}∧G(nil,∅) = false∧ true = false. By using the rules of the
operational semantics of CCS we have, e.g.,

rec x. (x | α.nil) µ−→ q ↖Rec (rec x. (x | α.nil)) | α.nil µ−→ q

↖Par, q=q1 | α.nil rec x. (x | α.nil) µ−→ q1

↖Rec (rec x. (x | α.nil)) | α.nil µ−→ q1

↖Par, q1=q2 | α.nil rec x. (x | α.nil) µ−→ q2

↖Rec ...

... rec x. (x | α.nil) µ−→ qn

↖Rec (rec x. (x | α.nil)) | α.nil µ−→ qn

↖Par, qn=(rec x. (x | α.nil)) | q′ α.nil µ−→ q′

↖Act, µ=α, q′=nil 2

It is then evident that for any n ∈ N we have

rec x. (x | α.nil) α−→ (rec x. (x | α.nil)) | nil | α.nil | · · · | α.nil︸ ︷︷ ︸
n

.

When we want to compare two processes p and q for strong bisimilarity it is
not necessary to compute the whole relation '. Instead, we can just focus on the
processes that are reachable from p and q. If the number of reachable states is
finite, then the calculation is effective, but possibly quite complex if the number of
states is large. In fact, the size of the LTS can explode for concise processes, due to
the interleaving of concurrent actions: if we have n processes p1, ..., pn running in
parallel, each with k possibly reachable states, then the process ((p1 | p2) | ...pn) can
have up to kn reachable states.

Example 11.14 (Strong bisimilarity as least fixpoint). Let us consider Example 11.9,
which we have already approached with game theory techniques. Now we illustrate
how to apply the fixpoint technique to the same system. Recall that

p def
= α.(β .nil+γ.nil) q def

= α.β .nil+α.γ.nil

Let us focus on the set of reachable states S and represent the relations by showing
the equivalence classes which they induce (over reachable processes). We start with
the coarsest relation, where any two processes are related (just one equivalence class).
At each iteration, we refine the relation by applying the operator Φ.
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R0 = Φ
0(⊥℘(S×S)) = ⊥℘(S×S) = { {p , q , β .nil+γ.nil , β .nil , γ.nil , nil} }

R1 = Φ(R0) = { {p,q} , {β .nil+γ.nil} , {β .nil} , {γ.nil} , {nil} }
R2 = Φ(R1) = { {p} , {q} , {β .nil+γ.nil} , {β .nil} , {γ.nil} , {nil} }

Initially, according to R0, any process is related to any other process, i.e., we have
a unique equivalence class.

After the first iteration (R1), we distinguish the processes on the basis of their
possible transitions. Note that, as all the target states are related by R0, we can only
discriminate by looking at the labels of transitions. For example, β .nil and γ.nil must
be distinguished because β .nil has an outgoing β -transition, while γ.nil does not
have a β -transition. Similarly β .nil+γ.nil must be distinguished from γ.nil because
it has a β -transition and from β .nil because it has a γ-transition. Moreover, the
inactive process nil is clearly distinguished from any other (non-deadlock) process.
Only p and q are related by R1, because both can execute only α-transitions.

At the second iteration we focus on the unique equivalence class {p,q} in R1
that is not a singleton, as we cannot split any further the other equivalence classes.
Now let us consider the transition q α−→ β .nil. Process p has a unique α-transition
that can be used to simulate the move of q, namely p α−→ β .nil+γ.nil, but β .nil and
β .nil+γ.nil are not related by R1, therefore p and q must be distinguished by R2.

Note that R2 is a fixpoint, because each equivalence class is a singleton and cannot
be split any further. Hence p and q fall in different equivalence classes and they are
not strongly bisimilar.

We conclude by studying strong bisimilarity of possibly unguarded processes.
Even in this case the least fixpoint exists, as granted by Knaster-Tarski’s fixpoint
Theorem 11.7 which ensures the existence of least and greatest fixpoints for monotone
functions over complete lattices.

Definition 11.8 (Complete lattice). A partial order (D,v) is a complete lattice if
any subset X ⊆ D has a least upper bound and a greatest lower bound, denoted by⊔

X and
d

X , respectively.

Note that any complete lattice has a least element ⊥=
d

D and a greatest element
>=

⊔
D. Any powerset ordered by inclusion defines a complete lattice, hence the

set ℘(P×P) of all relations over CCS processes is a complete lattice.
The next important result is named after Bronislaw Knaster who proved it for the

special case of lattices of sets and Alfred Tarski who generalised the theorem to its
current formulation.4

Theorem 11.7 (Knaster-Tarski’s fixpoint theorem). Let (D,v) be a complete lat-
tice and f : D→ D a monotone function. Then f has a least fixpoint and a greatest
fixpoint, defined respectively as follows:

dmin
def
=

l
{d ∈ D | f (d)v d} dmax

def
=
⊔
{d ∈ D | d v f (d)}

4 The theorem is actually stronger than what is presented here, because it asserts that the set of
fixpoints of a monotone function on a complete lattice forms a complete lattice itself.
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Proof. It can be seen that dmin is defined as the greatest lower bound of the set of
pre-fixpoints. To prove that dmin is the least fixpoint, we need to prove that

1. dmin is a fixpoint, i.e., f (dmin) = dmin;
2. for any other fixpoint d ∈ D of f we have dmin v d.

We split the proof of point 1, into two parts: f (dmin)v dmin and dmin v f (dmin).

For conciseness, let Pre f
def
= {d ∈ D | f (d)v d}. By definition of dmin, we have

dmin v d for any d ∈ Pre f . Since f is monotone, f (dmin)v f (d) and by transitivty

f (dmin)v f (d)v d

Thus, also f (dmin) is a lower bound of the set {d ∈ D | f (d)v d}. Since dmin is the
greatest lower bound, we have f (dmin)v dmin.

To prove the converse, note that by the previous property and monotonicity of f
we have f ( f (dmin)) v f (dmin). Therefore f (dmin) ∈ Pre f and since dmin is a lower
bound of Pre f it must be that dmin v f (dmin).

Finally, any fixpoint d ∈ D of f is also a pre-fixpoint, i.e., d ∈ Pre f and thus
dmin v d because dmin is a lower bound of Pre f .

The proof that dmax is the greatest fixpoint is analogous and thus omitted. ut

We have already seen that Φ is monotone, hence Knaster-Tarski’s fixpoint theorem
guarantees the existence of the least fixpoint, and hence strong bisimilarity, also
when infinitely branching processes are considered.

11.5 Compositionality

In this section we focus on compositionality issues of the abstract semantics which
we have just introduced. For an abstract semantics to be practically relevant it is
important that any process used in a system can be replaced by an equivalent process
without changing the semantics of the system. Since we have not used structural
induction in defining the abstract semantics of CCS, no kind of compositionality is
ensured w.r.t. the possible ways of constructing larger systems.

Definition 11.9 (Congruence). An equivalence ≡ is said to be a congruence (with
respect to a class of contexts C[·]) if

∀C[·]. p≡ q ⇒ C[p]≡C[q]

The next example shows an equivalence relation that is not a congruence.

Example 11.15 (Completed trace semantics). Let us consider the processes p and q
from Example 11.9. Take the following context

C[·] def
= ( · | α.β .δ .nil)\α\β\γ
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Now we can fill the hole in C[·] with the processes p and q:

C[p] = (α.(β .nil+γ.nil) | α.β .δ .nil)\α\β\γ

C[q] = ((α.β .nil+α.γ.nil) | α.β .δ .nil)\α\β\γ
Obviously C[p] and C[q] generate the same set of traces, however one of the processes
can “deadlock” before the interaction on β takes place, but not the other:

C[p]

τ
��

C[q]

τ

��

τ
��

((β .nil+γ.nil) | β .δ .nil)\α\β\γ
τ
��

(γ.nil | β .δ .nil)\α\β\γ

(nil | δ .nil)\α\β\γ
δ
��

(β .nil | β .δ .nil)\α\β\γ
τ

oo

(nil | nil)\α\β\γ

The difference can be formalised if we consider completed trace semantics. Let us
write p 6→ for the predicate ¬(∃µ,q. p

µ−→ q). A completed trace of p is a sequence
of actions µ1 · · ·µk (for k ≥ 0) such that there exist p0, ..., pk with

p = p0
µ1−→ p1

µ2−→ ·· · µk−1−−−→ pk−1
µk−→ pk 6→

Two processes are completed trace equivalent if they have the same traces and the
same completed traces.

We know from Example 11.9 that p and q have the same traces. The completed
traces of p are the same as those of q, namely { αβ , αγ }. However, the completed
traces of C[p] and C[q] are { ττδ } and { ττδ , τ }, respectively. We can thus
conclude that the completed trace semantics is not a congruence.

11.5.1 Strong Bisimilarity Is a Congruence

In order to guarantee the compositionality of CCS we must show that strong bisim-
ilarity is a congruence relation with respect to all CCS contexts. To this aim, it is
enough to prove that it is preserved by all the operators of CCS. So we need to prove
that, for any p, p0, p1,q,q0,q1 ∈P

• if p' q, then ∀µ. µ.p' µ.q;
• if p' q, then ∀α. p\α ' q\α;
• if p' q, then ∀φ . p[φ ]' q[φ ];
• if p0 ' q0 and p1 ' q1, then p0 + p1 ' q0 +q1;
• if p0 ' q0 and p1 ' q1, then p0 | p1 ' q0 | q1.
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The congruence property is important, because it allows us to replace any process
with an equivalent one in any context, preserving the overall behaviour.

Here we give the proof only for parallel composition, which is an interesting case
to consider. The other cases follow by similar arguments and are left as an exercise
(see Problem 11.7)

Lemma 11.3 (Strong bisimilarity is preserved by parallel composition). For any
p0, p1,q0,q1 ∈P , if p0 ' q0 and p1 ' q1, then p0 | p1 ' q0 | q1.

Proof. As usual we assume the premise p0 ' q0 ∧ p1 ' q1 and we would like to
prove that p0 | p1 ' q0 | q1, i.e., that:

∃R. (p0 | p1) R (q0 | q1) ∧ R⊆Φ(R)

Since p0 ' q0 and p1 ' q1 we have

p0 R0 q0 for some strong bisimulation R0 ⊆Φ(R0)
p1 R1 q1 for some strong bisimulation R1 ⊆Φ(R1)

Now let us consider the relation

R def
= {(r0 | r1 , s0 | s1) | r0 R0 s0 ∧ r1 R1 s1}

By definition it holds that (p0 | p1) R (q0 | q1). Now we show that R is a strong
bisimulation (i.e., that R⊆Φ(R)). Let us take a generic pair (r0 | r1 , s0 | s1) ∈ R and
let us consider a transition r0 | r1

µ−→ r. We need to prove that there exists s such that
s0 | s1

µ−→ s with (r,s) ∈ R. (The case where s0 | s1 executes a transition that r0 | r1
must simulate is completely analogous.) There are three rules whose conclusions
have the form r0 | r1

µ−→ r.

• The first case is when we have applied the first (Par) rule. So we have r0
µ−→ r′0

and r = r′0 | r1 for some r′0. Since r0 R0 s0 and R0 is a strong bisimulation relation,

there exists s′0 such that s0
µ−→ s′0 and (r′0,s

′
0) ∈ R0. Then, by applying the same

inference rule we get s0 | s1
µ−→ s′0 | s1. Since (r′0,s

′
0) ∈ R0 and (r1,s1) ∈ R1, we

have (r′0 | r1,s′0 | s1) ∈ R and we conclude by taking s = s′0 | s1.
• The second case is when we have applied the second (Par) rule. So we have

r1
µ−→ r′1 and r = r0 | r′1 for some r′1. By a similar argument to the previous case

we prove the thesis.

• The last case is when we have applied the (Com) rule. This means that r0
λ−→ r′0,

r1
λ−→ r′1, µ = τ and r = r′0 | r′1 for some observable action λ and processes r′0,r

′
1.

Since r0 R0 s0 and R0 is a strong bisimulation relation, there exists s′0 such that

s0
λ−→ s′0 and (r′0,s

′
0) ∈ R0. Similarly, since r1 R1 s1 and R1 is a strong bisimulation

relation, there exists s′1 such that s1
λ−→ s′1 and (r′1,s

′
1) ∈ R1. Then, by applying the

same inference rule we get s0 | s1
τ−→ s′0 | s′1. Since (r′0,s

′
0) ∈ R0 and (r′1,s

′
1) ∈ R1,

we have (r′0 | r′1,s′0 | s′1) ∈ R and we conclude by taking s = s′0 | s′1. ut
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11.6 A Logical View of Bisimilarity: Hennessy-Milner Logic

In this section we present a modal logic introduced by Matthew Hennessy and Robin
Milner. Modal logic allows us to express concepts such as “there exists a next state
such that”, or “for all next states”, some property holds. Typically, model checkable
properties are stated as formulas in some modal logic. In particular, Hennessy-Milner
modal logic is relevant for its simplicity and for its close connection to strong
bisimilarity. As we will see, in fact, two strongly bisimilar agents satisfy the same
set of modal logic formulas. This fact shows that strong bisimilarity is at the right
level of abstraction.

Definition 11.10 (HM-logic). The formulas of Hennessy-Milner logic (HM-logic)
are generated by the following grammar:

F ::= true | false |
∧
i∈I

Fi |
∨
i∈I

Fi | 3µ F | 2µ F

We write L for the set of HM-logic formulas (HM-formulas for short).
The formulas of HM-logic express properties over the states of an LTS, i.e., in

our case, of CCS agents. The meanings of the logic operators are the following:

true: is the formula satisfied by every agent. This operator is sometimes written
tt or just T.

false: is the formula never satisfied by any agent. This operator is sometimes
written ff or just F.∧

i∈I Fi: corresponds to the conjunction of the formulas in {Fi}i∈I . Notice that true
can be considered as a shorthand for an indexed conjunction where the set
I of indexes is empty.∨

i∈I Fi: corresponds to the disjunction of the formulas in {Fi}i∈I . Notice that false
can be considered as a shorthand for an indexed disjunction where the set
I of indexes is empty.

3µ F : is a modal operator; an agent p satisfies this formula if there exists a
µ-labelled transition from p to some state q that satisfies the formula F .
This operator is sometimes written 〈µ〉F .

2µ F : is a modal operator; an agent p satisfies this formula if for any q such that
there is a µ-labelled transition from p to q the formula F is satisfied by q.
This operator is sometimes written [µ]F .

As usual, logical satisfaction is defined as a relation |= between formulas and
their models, which in our case are CCS processes, seen as states of the LTS defined
by the operational semantics.

Definition 11.11 (Satisfaction relation). The satisfaction relation |= ⊆P×L is
defined as follows (for any p ∈P , F ∈L and {Fi}i∈I ⊆L ):
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p |= true
p |= ∧

i∈I Fi iff ∀i ∈ I. p |= Fi
p |= ∨

i∈I Fi iff ∃i ∈ I. p |= Fi

p |= 3µ F iff ∃p′. p
µ−→ p′∧ p′ |= F

p |= 2µ F iff ∀p′. p
µ−→ p′⇒ p′ |= F

If p |= F we say that the process p satisfies the HM-formula F .

Notably, if p cannot execute any µ-transition, then p |=2µ F for any formula F .
For example, the formula 3α true is satisfied by all processes that can execute an
α-transition, and the formula 2β false is satisfied by all processes that cannot execute
a β -transition. Then the formula 3α true∧2β false is satisfied by all processes that
can execute an α-transition but not a β -transition, while the formula 3α2β false is
satisfied by all processes that can execute an α-transition to reach a state where no
β -transition can be executed. Can you work out which processes satisfy the formulas
3α false and 2β true? And the formula 2β3α true?

HM-logic induces an obvious equivalence on CCS processes: two agents are
logically equivalent if they satisfy the same set of formulas.

Definition 11.12 (HM-logic equivalence). Let p and q be two CCS processes. We
say that p and q are HM-logic equivalent, written p≡HM q if

∀F ∈L . p |= F ⇔ q |= F

Example 11.16 (Non-equivalent agents). Let us consider two CCS agents p and q
whose LTSs are below:

p

α

��·
α

��
α

��

α

��·
β

��
γ

��

·
β

��

·
γ

��· · · ·

q
α

��

α

��·
α

��

·
α

��
α

��·
β

��
γ

��

·
β

��

·
γ

��· · · ·
We would like to show a formula F which is satisfied by one of the two agents and
not by the other. For example, if we take

F =3α2α(3β true∧3γ true) we have p 6 |=F and q |= F

The agent p does not satisfy the formula F because after having executed its unique
α-transition we reach a state where it is possible to take α-transitions that lead to
states where either β or γ is enabled, but not both. On the contrary, we can execute
the leftmost α-transition of q and we reach a state that satisfies 2α(3β true∧3γ true)
(i.e., the (only) state reachable by an α-transition can perform both γ and β ).
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Although negation is not present in the syntax, the expressiveness of HM-logic
is closed under negation, i.e., given any formula F we can easily compute another
formula Fc such that

∀p ∈P. p |= F ⇔ p 6|= Fc

The converse formula Fc is defined by structural recursion as follows:

truec def
= false falsec def

= true

(
∧

i∈I Fi)
c def
=
∨

i∈I Fc
i (

∨
i∈I Fi)

c def
=
∧

i∈I Fc
i

(3µ F)c def
= 2µ Fc (2µ F)c def

= 3µ Fc

Now we present two theorems which allow us to connect strong bisimilarity and
modal logic. As we said, this connection is very important from both theoretical and
practical points of view. We start by introducing a measure over formulas, called
modal depth, to estimate the maximal number of consecutive steps that must be taken
into account to check the validity of a formula.

Definition 11.13 (Depth of a formula). We define the modal depth (also depth) of
a formula as follows:

md(true) = md(false) def
= 0

md(
∧
i∈I

Fi) = md(
∨
i∈I

Fi)
def
= max{md(Fi) | i ∈ I}

md(3µ F) = md(2µ F)
def
= 1+md(F)

It is immediate to see that the modal depth corresponds to the maximum nesting
level of modal operators. Moreover md(Fc) = md(F) (see Problem 11.16). For
example, in the case of the formula F in Example 11.16, we have md(F) = 3. We
will denote the set of logic formulas of modal depth k by Lk = {F ∈L |md(F) = k}.

The first theorem ensures that if two agents are not distinguished by the kth
iteration of the fixpoint calculation of strong bisimilarity, then no formula of depth k
can distinguish between the two agents, and vice versa.

Theorem 11.8. Let k ∈ N and let the relation 'k be defined as follows (see Exam-
ple 11.12)

p'k q ⇔ p Φ
k(P f ×P f ) q.

Then, we have

∀k ∈ N. ∀p,q ∈P f . p'k q iff ∀F ∈Lk. (p |= F)⇔ (q |= F).

Proof. We proceed by strong mathematical induction on k.

Base case: for k = 0 the only formulas F with md(F) = 0 are (conjunctions and
disjunctions of) true and false, which cannot be used to distinguish
processes. In fact Φ0(P f ×P f ) = P f ×P f .
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Ind. case: Suppose that

∀p,q ∈P f . p'k q iff ∀F ∈Lk. (p |= F)⇔ (q |= F)

We want to prove that

∀p,q ∈P f . p'k+1 q iff ∀F ∈Lk+1. (p |= F)⇔ (q |= F)

We prove that

1. If p 6'k+1 q then a formula F ∈Lk+1 can be found such that p |= F
and q 6|= F . Without loss of generality, suppose there are µ, p′ such
that p

µ−→ p′ and for any q′ such that q
µ−→ q′ then p′ 6'k q′. By the

inductive hypothesis, for any q′ such that q
µ−→ q′ there exists a

formula Fq′ ∈Lk that is satisfied5 by p′ and not by q′. Since q is

finitely branching, the set Q def
= {q′ | q

µ−→ q′} is finite and we can
set

F def
= 3µ

∧
q′∈Q

Fq′

2. If p'k+1 q and p |=F then q |=F . The proof proceeds by structural
induction on F . We leave the reader to fill in the details. ut

The second theorem generalises the above correspondence by setting up a connec-
tion between formulas of any depth and strong bisimilarity.

Theorem 11.9. Let p and q be two finitely branching CCS processes. Then we have

p' q if and only if p≡HM q

Proof. It is a consequence of Theorems 11.6 and 11.8. ut

It is worth reading this result both in the positive sense, namely strongly bisimilar
agents satisfy the same set of HM-formulas, and in the negative sense, namely if
two finitely branching agents p and q are not strongly bisimilar, then there exists a
formula F that distinguishes between them, i.e., such that p |= F but q 6|= F . From a
theoretical point of view these theorems show that strong bisimilarity distinguishes
all and only those agents which enjoy different properties. These results witness that
the relation ' is a good choice from the logical point of view. From the point of
view of verification, if we are given a specification F ∈L and a (finitely branching)
implementation p, it can be convenient to minimise the size of the LTS of p by taking
its quotient q up to bisimilarity and then checking whether q |= F .

Later, in Section 12.3, we will show that we can define a denotational semantics for
logic formulas by assigning to each formula F the set {p | p |= F} of all processes
that satisfy F .

5 If the converse applies, we just take Fc
q′ .
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11.7 Axioms for Strong Bisimilarity

Finally, we show that strong bisimilarity can be finitely axiomatised. First we present
a theorem which allows us to derive for every non-recursive CCS agent a suitable
normal form.

Theorem 11.10. Let p be a (non-recursive) CCS agent. Then there exists a CCS
agent, strongly bisimilar to p, built using only prefix, sum and nil.

Proof. We proceed by structural recursion. First we define two auxiliary binary
operators b and ‖, where pbq means that p must make a transition while q stays
idle, and p1‖p2 means that p1 and p2 must perform a synchronisation. In both cases,
after the transition, the processes run in parallel. This corresponds to saying that the
operational semantics rules for pbq and p‖q are

p
µ−→ p′

pbq µ−→ p′ | q
p λ−→ p′ q λ−→ q′

p‖q τ−→ p′ | q′

We show how to decompose the parallel operator, then we show how to simplify
the other cases:

p1 | p2 ' p1bp2 + p2bp1 + p1‖p2

nilbp ' nil
µ.pbq ' µ.(p | q)

(p1 + p2)bq ' p1bq + p2bq

nil‖p' p‖nil ' nil
µ1.p1‖µ2.p2 ' nil if µ1 6= µ2∨µ1 = τ

λ .p1‖λ .p2 ' τ.(p1 | p2)

(p1 + p2)‖q ' p1‖q + p2‖q
p‖(q1 +q2) ' p‖q1 + p‖q2

nil\α ' nil
(µ.p)\α ' nil if µ ∈ {α,α}
(µ.p)\α ' µ.(p\α) if µ 6= α,α

(p1 + p2)\α ' p1\α + p2\α

nil[φ ] ' nil
(µ.p)[φ ] ' φ(µ).p[φ ]

(p1 + p2)[φ ] ' p1[φ ] + p2[φ ]
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By repeatedly applying the axioms from left to right it is evident that any (non-
recursive) agent p can be rewritten to a sequential agent q built using only action
prefix, sum and nil. Since the left-hand side and the right-hand side of each axiom
can be proved to be strongly bisimilar, by transitivity and congruence of strong
bisimilarity we have that p and q are strongly bisimilar. ut

From the previous theorem, it follows that every non-recursive CCS agent can
be equivalently written using action prefix, sum and nil. Note that the LTS of any
non-recursive CCS agent has only a finite number of reachable states. We call any
such agent finite. Finally, the axioms that characterise strong bisimilarity are the
following:

p+nil ' p

p1 + p2 ' p2 + p1

p1 +(p2 + p3) ' (p1 + p2)+ p3

p+ p ' p

This last set of axioms simply asserts that processes with sum define an idempotent,
commutative monoid whose neutral element is nil.

Theorem 11.11. Any two finite CCS processes p and q are strongly bisimilar if and
only if they can be equated using the above axioms.

Proof. We need to prove that the axioms are sound (i.e., they preserve strong bisimi-
larity) and complete (i.e., any strongly bisimilar finite agents can be proved equivalent
using the axioms). Soundness can be proved by showing that the left-hand side and
the right-hand side of each axiom are strongly bisimilar, which can be readily done
by exhibiting suitable strong bisimulation relations, similarly to the way we proved
that strong bisimilarity is a congruence. Completeness is more involved. First, it
requires the definition of a normal form representation for processes, called head
normal form (HNF for short). Second, it requires proving that for any two strongly
bisimilar processes p and q that are in HNF we can prove that p is equal to q by using
the axioms. Third, it requires proving that any process can be put in HNF. Formally,
a process p is in HNF if it is written p = ∑i∈I µi.pi for some processes pi that are
themselves in HNF. We omit the details of the proof. ut

Example 11.17 (Proving strong bisimilarity by equational reasoning). We have seen
in Example 11.7 that the operational semantics reduces concurrency to nondeter-
minism. Let us prove that α.nil | β .nil is strongly bisimilar to α.β .nil+β .α.nil by
using the axioms for strong bisimilarity. First let us observe that

nil | nil ' nilbnil + nilbnil + nil‖nil ' nil + nil + nil ' nil

Then, we have
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α.nil | β .nil ' α.nilbβ .nil + β .nilbα.nil + α.nil‖β .nil
' α.(nil | β .nil) + β .(nil | α.nil) + nil
' α.(nilbβ .nil + β .nilbnil + nil‖β .nil)+

β .(nilbα.nil + α.nilbnil + nil‖α.nil)
' α.(nil + β .(nil | nil) + nil) + β .(nil + α.(nil | nil) + nil)
' α.β .nil + β .α.nil

We remark that strong bisimilarity of (possibly recursive) CCS processes is not
decidable in general, while the above theorem can be used to prove that strong
bisimilarity of finite CCS processes is decidable. Moreover, if two finitely branching
(but possibly infinite-state) processes are not strongly bisimilar, then we should be
able to find a finite counterexample, i.e., strong bisimilarity inequivalence of finitely
branching processes is semi-decidable (as a consequence of Theorem 11.9).

11.8 Weak Semantics of CCS

Let us now see an example that illustrates the limits of strong bisimilarity as a
behavioural equivalence between agents.

Example 11.18 (Linked buffers). Let us consider the buffers implemented in Exam-
ple 11.8. An alternative implementation of a buffer of capacity two could be obtained
by linking two buffers of capacity one. Let us define the linking operation, similarly
to what we have done in Example 11.3, as follows:

p _ q def
= (p[φout ] | q[φin])\`

where φout is the permutation that switches out with ` and φin is the permutation that
switches in with ` (they are the identity otherwise). Then, an empty buffer of capacity
two could be implemented by taking B1

0 _ B1
0. However, its LTS is

B1
0 _ B1

0
in

xx
B1

1 _ B1
0

τ // B1
0 _ B1

1

out
ff

inxx
B1

1 _ B1
1

out
ff

Obviously the internal τ-transition B1
1 _ B1

0
τ−→ B1

0 _ B1
1, which is necessary to shift

the data from the leftmost buffer to the rightmost buffer, makes it impossible to
establish a strong bisimulation between B2

0 and B1
0 _ B1

0.
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The above example shows that, when we consider τ as an internal action, not
visible from outside the system, we would like, accordingly, to relate observable
behaviours that differ just for τ-actions. Therefore strong bisimilarity is not abstract
enough for some purposes. For example, in many situations, one can use CCS to
give an abstract specification of a system and also to define an implementation that
should be provably “equivalent” to the specification, but typically the implementation
makes use of auxiliary invisible actions τ that are not present in the specification.
So it is natural to try to abstract away from the invisible (τ-labelled) transitions by
defining a new equivalence relation. This relation is called weak bisimilarity. We
start by defining a new, more abstract, LTS, where a single transition can involve
several internal moves.

11.8.1 Weak Bisimilarity

Definition 11.14 (Weak transitions). We let⇒ be the weak transition relation on
the set of states of an LTS defined as follows:

p τ
=⇒ q def

= p τ−→ . . .
τ−→ q ∨ p = q

p λ
=⇒ q def

= ∃p′,q′. p τ
=⇒ p′ λ−→ q′ τ

=⇒ q

Note that p τ
=⇒ q means that q can be reached from p via a (possibly empty)

finite sequence of τ-transitions, i.e., the weak transition relation τ
=⇒ coincides with

the reflexive and transitive closure (
τ−→)∗ of the silent transition relation τ−→. For λ

an observable action, the relation λ
=⇒ requires instead the execution of exactly one

λ -transition, possibly preceded and followed by any finite sequence (also possibly
empty) of silent transitions.

We can now define a notion of bisimulation that is based on weak transitions.

Definition 11.15 (Weak bisimulation). Let R be a binary relation on the set of states
of an LTS; then it is a weak bisimulation if

∀s1,s2. s1 R s2⇒
{
∀µ,s′1. s1

µ−→ s′1 implies ∃s′2. s2
µ
=⇒ s′2 and s′1 R s′2; and

∀µ,s′2. s2
µ−→ s′2 implies ∃s′1. s1

µ
=⇒ s′1 and s′1 R s′2

Definition 11.16 (Weak bisimilarity ≈). Let s1 and s2 be two states of an LTS,
then they are said to be weakly bisimilar, written s1 ≈ s2, if there exists a weak
bisimulation R such that s1 R s2.

As we did for strong bisimilarity, we can now define a transformation function
Ψ :℘(P×P)→℘(P×P) which takes a relation R on P and returns another
relation Ψ(R) by exploiting simulations via weak transitions:



11.8 Weak Semantics of CCS 263

p Ψ(R) q def
=

{
∀µ, p′. p

µ−→ p′ implies ∃q′. q
µ
=⇒ q′ and p′ R q′; and

∀µ,q′. q
µ−→ q′ implies ∃p′. p

µ
=⇒ p′ and p′ R q′

Then a weak bisimulation R is just a relation such that Ψ(R)v R (i.e., R⊆Ψ(R)),
from which it follows that

p≈ q if and only if ∃R. p R q∧Ψ(R)v R

and that an alternative definition of weak bisimilarity is

p≈ q def
=

⋃
Ψ(R)vR

R

Weak bisimilarity is an equivalence relation and it seems to improve the notion
of equivalence w.r.t. ', because ≈ abstracts away from the silent transitions as we
required. Unfortunately, there are two problems with this relation:

1. First, the LTS obtained by considering weak transitions
µ
=⇒ instead of ordinary

transitions
µ−→ can become infinitely branching also for guarded terms (consider,

e.g., the finitely branching process rec x. (τ.x | α.nil), analogous to the agent dis-
cussed in Example 11.13). Thus the function Ψ is not continuous, and the minimal
fixpoint cannot be reached, in general, with the usual chain of approximations.

2. Second, and much worse, weak bisimilarity is a congruence w.r.t. all operators
except choice +, as the following example shows. As a (minor) consequence,
weak bisimilarity cannot be axiomatised by context-insensitive laws.

Example 11.19 (Weak bisimilarity is not a congruence). Take the CCS agents

p def
= α.nil q def

= τ.α.nil

Obviously, we have p≈ q, since their behaviours differ only by the ability to perform
an invisible action τ . Now we define the following context:

C[·] = ·+β .nil

Then by embedding p and q within the context C[·] we get

C[p] = α.nil+β .nil 6≈ τ.α.nil+β .nil =C[q]

In fact C[q] τ−→ α.nil, while C[p] has only one invisible weak transition that can be
used to match such a step, which is the idle step C[p] τ

=⇒ C[p] and C[p] is clearly
not equivalent to α.nil (because the former can perform a β -transition that the
latter cannot simulate). This phenomenon is due to the fact that τ-transitions are
not observable but can be used to discard some alternatives within nondeterministic
choices. While quite unpleasant, the above fact is not in any way due to a CCS
weakness, or misrepresentation of reality, but rather illuminates a general property of
nondeterministic choice in systems represented as black boxes.
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11.8.2 Weak Observational Congruence

As shown by Example 11.19, weak bisimilarity is not a congruence relation. In this
section we present one possible (partial) solution. The idea is to close the equivalence
w.r.t. all sum contexts.

Let us consider Example 11.19, where the execution of a τ-transition forces the
system to make a choice which is invisible to an external observer. In order to make
this kind of choice observable we can define the relation u as follows.

Definition 11.17 (Weak observational congruence u). We say that two processes
p and q are weakly observationally congruent, written pu q, if

p≈ q ∧ ∀r ∈P. p+ r ≈ q+ r

Weak observational congruence can be defined directly by letting

pu q def
=


∀p′. p τ−→ p′ implies ∃q′,q′′. q τ−→ q′′ τ

=⇒ q′ and p′ ≈ q′; and

∀λ , p′. p λ−→ p′ implies ∃q′. q λ
=⇒ q′ and p′ ≈ q′;

(and, vice versa, any transition of q can be weakly simulated by p)

As we can see, an internal action p τ−→ p′ must now be matched by at least one internal
action. Notice however that this is not a recursive definition, sinceu is simply defined
in terms of ≈: after the first step has been performed, other τ-labelled transitions can
be simulated also by staying idle. Now it is obvious that α.nil 6u τ.α.nil, because
α.nil cannot simulate the τ-transition τ.α.nil τ−→ α.nil.

The relation u is a congruence but as we can see in the following example it is
not a (weak) bisimulation, namely u 6⊆Ψ(u).

Example 11.20 (Weak observational congruence is not a weak bisimulation). Let

p def
= β .p′ p′ def

= τ.α.nil q def
= β .q′ q′ def

= α.nil

We have p′ 6u q′ (see above), although Example 11.19 shows that p′ ≈ q′. Therefore

p≈ q and pu q

but, according to the weak bisimulation game, if Alice the attacker plays the β -

transition p
β−→ p′, Bob the defender has no chance of playing a (weak) β -transition

on q to reach a state that is related by u to p′. Thus u is not a pre-fixpoint of Ψ .

Weak observational congruence u can be axiomatised by adding to the axioms
for strong bisimilarity the following three Milner’s τ laws:

p+ τ.p u τ.p (11.1)
µ.(p+ τ.q) u µ.(p+ τ.q)+µ.q (11.2)

µ.τ.p u µ.p (11.3)
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11.8.3 Dynamic Bisimilarity

Example 11.20 shows that weak observational congruence is not a (weak) bisim-
ulation. In this section we present the largest relation which is at the same time
a congruence and a weak bisimulation. It is called dynamic bisimilarity and was
introduced by Vladimiro Sassone.

Definition 11.18 (Dynamic bisimilarity ∼=). We define dynamic bisimilarity ∼= as
the largest relation that satisfies

p∼= q implies ∀C[·]. C[p]Ψ(∼=)C[q]

In this case, at every step we close the relation by comparing the behaviour w.r.t.
any possible embedding context. In terms of game theory this definition can be
viewed as “at each turn Alice the attacker is also allowed to insert both agents into
the same context and then choose the transition”.

Alternatively, we can define dynamic bisimilarity in terms of the transformation
function Θ :℘(P×P)→℘(P×P) such that

p Θ(R) q def
=


∀p′. p τ−→ p′ implies ∃q′,q′′. q τ−→ q′′ τ

=⇒ q′ and p′ R q′; and

∀λ , p′. p λ−→ p′ implies ∃q′. q λ
=⇒ q′ and p′ R q′

(and, vice versa, any transition of q can be weakly simulated by p)

In this case, every internal move must be simulated by making at least one internal
move: this is different from weak observational congruence, where after the first step,
an internal move can be simulated by staying idle, and it is also different from weak
bisimulation, where any internal move can be simulated by staying idle.

Then, we say that R is a dynamic bisimulation if Θ(R)v R, and dynamic bisimi-
larity can be defined by letting

∼= def
=

⋃
Θ(R)vR

R

Example 11.21. Let p, p′,q and q′ be defined as in Example 11.20. We have:

p ≈ q and p′ ≈ q′ (weak bisimilarity)
p u q and p′ 6u q′ (weak observational congruence)
p 6∼= q and p′ 6∼= q′ (dynamic bisimilarity)

As for weak observational congruence, we can axiomatise dynamic bisimilarity of
finite processes. The axiomatisation of ∼= is obtained from that of u by omitting
the third Milner’s τ law (Equation 11.3), i.e., by adding to the axioms for strong
bisimilarity the laws

p+ τ.p ∼= τ.p (11.4)
µ.(p+ τ.q) ∼= µ.(p+ τ.q)+µ.q (11.5)
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Fig. 11.11: Main relations in the CPO⊥ (℘(P×P),v)

Figure 11.11 illustrates the main classes of bisimulations (strong, weak and
dynamic), the corresponding bisimilarities (', ∼= and ≈, respectively) and other
notions of process equivalence (graph isomorphism, trace equivalence and weak
observational congruence). From the diagram it is evident that

1. graph isomorphism is a strong bisimulation;
2. any strong bisimulation is also a dynamic bisimulation;
3. any dynamic bisimulation is also a weak bisimulation; and
4. all classes of bisimulations include the identity relation and are closed w.r.t.

(countable) union, inverse and composition.

To memorise the various inclusions, one can note that moving from strong to dynamic
bisimulation and from dynamic to weak corresponds to allowing more options to the
defender in the bisimulation game:

1. in strong games, the defender must reply by playing a single transition;
2. in dynamic games, the defender can additionally use any number of τ-transitions

before and after the chosen transition;
3. in weak games, the defender can also decide to leave the process idle.

In all games, the rules for the attacker stay the same.
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We recall that, in general, a bisimulation relation R is not an equivalence relation.
However, its induced equivalence ≡R is also a bisimulation. Moreover, all bisimi-
larities (i.e., the largest bisimulations) are equivalence relations. Weak bisimilarity
≈ is not a congruence, as marked by the absence of a bottom horizontal line in
the symbol. Dynamic bisimilarity ∼= is the largest congruence that is also a weak
bisimulation. Weak observational congruenceu is the largest congruence included in
weak bisimilarity; it includes dynamic bisimilarity, but it is not a weak bisimulation.
Finally, trace equivalence is a congruence relation and it includes strong bisimilarity.

Problems

11.1. Draw the complete LTS for the agent ((p | q) | r)\α of Example 11.2.

11.2. Write the recursive CCS process that corresponds to X3 in Example 11.5.

11.3. Given a natural number n≥ 1, let us define the family of CCS processes Bn
k for

0≤ k ≤ n by letting

Bn
0

def
= in.Bn

1 Bn
k

def
= in.Bn

k+1 +out.Bn
k−1 for 0 < k < n Bn

n
def
= out.Bn

n−1

Intuitively Bn
k represents a buffer with n positions of which k are occupied (see

Example 11.8).
Prove that Bn

0 ' B1
0 | B1

0 | · · · | B1
0︸ ︷︷ ︸

n

by providing a suitable strong bisimulation.

11.4. Prove that the union R1∪R2 and the composition

R1 ◦R2
def
= {(p, p′) | ∃p′′.p R1 p′′∧ p′′ R2 p′}

of two strong bisimulation relations R1 and R2 are also strong bisimulation relations.

11.5. Exploit the properties outlined in Problem 11.4 to prove that strong bisimilarity
is an equivalence relation (i.e., to prove Theorem 11.1).

11.6. CCS is expressive enough to encode imperative programming languages and
shared-memory models of computation. A possible encoding is outlined below:

Termination: We can use a dedicated channel done over which a message is sent
when the current command is terminated. The message will trigger
the continuation, if any. In the following we let

Done def
= done.nil

Skip: A skip statement is translated directly as τ.Done or simply Done.
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Variables: Suppose x is a variable whose possible values range over a fi-
nite domain {v1, ...,vn}. Such variables can have n different states
X1,X2, ...,Xn, depending on the currently stored value. In any such
state, a write operation can change the value stored in the variable,
or the current value can be read. We can model this situation by
considering (recursively defined processes)

XW def
= ∑

n
i=1 xwi.Xi

X1
def
= xr1.X1 +XW ... Xn

def
= xrn.Xn +XW

where in any state Xi and for any j ∈ [1,n]

• a message on channel xw j causes a change of state to X j;
• a message on channel xr j is accepted if and only if j = i.

Allocation: A variable declaration such as

var x

can be modelled by the allocation of an uninitialised variable,6 to-
gether with the termination message

xw1.X1 + xw2.X2 + ...+ xwn.Xn | Done

Assignment: An assignment such as
x := vi

can be modelled by sending a message over the channel xwi to the
process that manages the variable x:

xwi.Done

Sequencing: Let p1, p2 be the CCS processes modelling the commands c1,c2.
Then, we could try to model the sequential composition

c1;c2

simply as p1 | done.p2, but this solution is unfortunate, because
when considering several processes composed sequentially, such
as (c1;c2);c3, then the termination signal produced by p1 could
activate p3 instead of p2. To amend the situation, we can rename the
termination channel of p1 to a private name d, shared by p1 and p2
only:

(p1[φdone] | d.p2)\d
where φdone switches done with d (and is the identity otherwise).

6 Notice that an uninitialised variable cannot be read.
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Complete the encoding by implementing the following constructs:

Conditionals: Let p1, p2 be the CCS processes modelling the commands c1,c2.
Then, how can we model the conditional statement below?

if x = vi then c1 else c2

Iteration: Let p be the CCS process modelling the command c. Then, how can
we model the while statement below?

while x = vi do c

Concurrency: Let p1, p2 be the CCS processes modelling the commands c1,c2.
Then, how can we model the parallel composition below?

c1 | c2

Hint: note that p1 | p2 is not the correct answer: we want to signal
termination when both the executions of p1 and p2 are terminated.

11.7. Prove that strong bisimilarity ' is a congruence w.r.t. action prefix, restriction,
relabelling and sum (see Section 11.5.1).

11.8. Let us consider the agent A def
= rec x. (α.x | β .nil). Prove that among the

reachable states from A there exist infinitely many states that are not strongly bisimilar.
Can there exist an agent B' A that has a finite number of reachable states?

11.9. Prove that the LTS of any CCS process p built using only action prefix, sum,
recursion and nil has a finite number of states.

11.10. Draw the LTS for the CCS processes

p def
= rec x. (α.x+α.nil) q def

= rec y. (α.α.y+α.nil)

Then prove that p 6' q by exhibiting a formula in HM-logic.

11.11. Let us consider the CCS processes

r def
= α.(β .γ.nil+β .τ.γ.nil+ τ.β .nil+β .nil)

s def
= α.(β .γ.τ.nil+ τ.β .nil)+α.β .nil

Draw the LTS for r and s and prove that they are weakly observationally congruent
by exploiting the axioms presented in Sections 11.7 and 11.8.2.

11.12. Consider the CCS agents

p def
= (rec x. α.x) | rec y. β .y q def

= rec z. α.α.z+α.β .z+β .α.z+β .β .z

Prove that p and q are strongly bisimilar or exhibit an HM-logic formula F that can
be used to distinguish them.
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11.13. Let us consider sequential CCS agents composed using only nil, action prefix
and sum. Prove that for any such agents p,q and any permutation of action names ϕ

p
µ−→ q implies ϕ(p)

ϕ(µ)−−−→ ϕ(q)

Then prove that p' q implies ϕ(p)' ϕ(q), where ' denotes strong bisimilarity.

11.14. Let us consider the LTSs below:

A0

τ

��
α // A1

β

��

τ~~
A2

β

33
τ

`` B0

α

��

τ

  
B1

β

��

α

``

1. Write the recursive CCS expressions that correspond to A0 and B0.
Hint: Introduce a rec construct for each node in the diagram and name the process
variables after the nodes for simplicity, e.g., for A0 write rec A0. (τ.A0 + ...).

2. Prove that A0 6≈ B0 and B0 ≈ B1, where ≈ is weak bisimilarity.

11.15. Let us define a loose bisimulation to be a relation R such that

∀p,q. p R q implies

{
∀µ, p′. p

µ
=⇒ p′ implies ∃q′. q

µ
=⇒ q′ and p′ R q′; and

∀µ,q′. q
µ
=⇒ q′ implies ∃p′. p

µ
=⇒ p′ and p′ R q′

Prove that weak bisimilarity is the largest loose bisimulation by showing that

1. any loose bisimulation is a weak bisimulation; and
2. any weak bisimulation is a loose bisimulation.

Hint: For (2) prove first, by mathematical induction on n ≥ 0, that for any weak
bisimulation R, any two processes p R q, and any sequence of transitions p τ−→ p1

τ−→
p2 · · · τ−→ pn there exists q′ with q τ

=⇒ q′ and pn R q′.

11.16. Let P denote the set of all (closed) CCS processes.

1. Prove that ∀p,q ∈P. p | q ≈ q | τ.p, where ≈ denotes weak bisimilarity, by
showing that the relation R below is a weak bisimulation:

R def
= {(p | q,q | τ.p) | p,q ∈P}∪{(p | q,q | p) | p,q ∈P}

2. Then exhibit two processes p and q and a context C[·] showing that s def
= p | q and

t def
= q | τ.p are not weakly observationally congruent.

11.17. Prove that for any HM-formula F we have (Fc)c = F and md(Fc) = md(F).



Chapter 12
Temporal Logic and the µ-Calculus

Formal methods will never have a significant impact until they
can be used by people that don’t understand them. (Tom Melham)

Abstract As we have briefly discussed in the previous chapter, modal logic is a
powerful tool that allows us to check important behavioural properties of systems. In
Section 11.6 the focus was on Hennessy-Milner logic, whose main limitation is due
to its finitary structure: a formula can express properties of states up to a finite number
of steps ahead and thus only local properties can be investigated. In this chapter we
show some extensions of Hennessy-Milner logic that increase the expressiveness of
the formulas by defining properties about finite and infinite computations. The most
expressive language that we present is the µ-calculus, but we start by introducing
some other well-known logics for program verification, called temporal logics.

12.1 Specification and Verification

Reactive systems, such as those consisting of parallel and distributed processes, are
characterised by non-terminating and highly nondeterministic behaviour. Reactive
systems have become widespread in our daily activities, from banking to healthcare,
and in software-controlled safety-critical systems, from railway control systems
to spacecraft control systems. Consequently, gaining maximum confidence about
their trustworthiness has become an essential, primary concern. Intensive testing
can facilitate the discovery of bugs, but cannot guarantee their absence. Moreover,
developing test suites that grant full coverage of possible behaviours is difficult in
the case of reactive systems, due to their above mentioned intrinsic features.

Fuelled by impressive, world-famous disaster stories of software failures1 that
(maybe) could have been avoided if formal methods had been employed, over the

1 Top famous stories include the problems with the Therac-25 radiation therapy engine, which in the
period 1985-1987 caused the death of several patients by releasing massive overdoses of radiation;
the floating-point division bug in the Intel Pentium P5 processor due to an incorrectly coded lookup
table and discovered in 1994 by Professor Thomas R. Nicely at Lynchburg College; and the launch
failure of the Ariane 5.01 maiden flight due to an overflow in data conversion that caused a hardware
exception and finally led to self-destruction.
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years, formal methods have provided extremely useful support in the design of
reliable reactive systems and in gaining high confidence that their behaviour will be
correct. The application of formal logics and model checking is nowadays common
practice in the early and advanced stages of software development, especially in the
case of safety-critical industrial applications. While disaster stories do not prove,
by themselves, that failures could have been avoided, in the last three decades
many success stories can be found in several different areas, such as, e.g., that of
mobile communications and security protocols, chip manufacturing, air-traffic control
systems and nuclear plant emergency systems.

Formal logics serve for writing down unambiguous specifications about how a pro-
gram is supposed to behave and for reasoning about system correctness. Classically,
we can divide the properties to be investigated into three categories:

safety: properties expressing that something bad will not happen;
liveness: properties expressing that something good will happen;
fairness: properties expressing that something good will happen infinitely often.

The first step in extending HM-logic is to introduce the concept of time, which
was present only in a primitive form in the modal operators. This will extend the
expressiveness of modal logic, making it possible to talk about concepts such as “at
the next instant of time”, “always”,“never” or “sometimes”. When several options
are possible, we will also use path quantifiers, meaning “for all possible future
computations” and “for some possible future computation”. In order to represent the
concept of time in our logics we have to model it in some mathematical fashion. In
our discussion we assume that time is discrete and infinite.

We start by introducing temporal logics and then present the µ-calculus, which
comes equipped with least and greatest fixpoint operators. Notably, most modal
and temporal logics can be defined as fragments of the µ-calculus, which in turn
provides an elegant and uniform framework for comparison and system verification.
Translations from temporal logics to the µ-calculus are of practical relevance, because
they allow us not only to re-use algorithms for the verification of µ-calculus formulas
to check whether temporal logic statements are satisfied, but also because temporal
logic formulas are often more readable than specifications written in the µ-calculus.

12.2 Temporal Logic

Temporal logic has similarities to HM-logic, but

• temporal logic is based on a set of atomic propositions whose validity is associated
with a set of states, i.e., the observations are taken on states and not on (actions
labelling the) arcs;

• temporal operators allow us to look further than the “next” operator of HM-logic;
• the choice of representing the time as linear (linear temporal logic) or as a tree

(computation tree logic) will lead to different types of logic, that roughly corre-
spond to the trace semantics view vs the bisimulation semantics view.
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12.2.1 Linear Temporal Logic

In the case of Linear Temporal Logic (LTL), time is represented as a line. This means
that the evolutions of the system are linear: they proceed from one state to another
without making any choice. The formulas of LTL are based on a set P of atomic
propositions p, which can be composed using the classical logic operators together
with the following temporal operators:

O: is called the next operator. The formula Oφ means that φ is true in the next state
(i.e., in the next instant of time). Some literature uses X or N in place of O.

F : is called the finally operator. The formula Fφ means that φ is true sometime in
the future.

G: The formula Gφ means that φ is always (globally) valid in the future.
U : is called the until operator. The formula φ0Uφ1 means that φ0 is true until the

first time that φ1 is true.

LTL is also called Propositional Temporal Logic (PTL).

Definition 12.1 (LTL formulas). The syntax of LTL formulas is defined as follows:

φ ::= true | false | ¬φ | φ0∧φ1 | φ0∨φ1 |
p | O φ | F φ | G φ | φ0 U φ1

where p ∈ P is any atomic proposition.

In order to represent the state of the system while time elapses we introduce the
following mathematical structure.

Definition 12.2 (Linear structure). A linear structure is a pair (S,P), where P is
a set of atomic propositions and S : P→℘(N) is a function assigning to each
proposition p ∈ P the set of time instants in which it is valid; formally

∀p ∈ P. S(p) = {n ∈ N | n satisfies p}

In a linear structure, the natural numbers 0,1,2 . . . represent the time instants,
and the states in them, and S represents, for every proposition, the states where it
holds, or, alternatively, it represents for every state the propositions it satisfies. The
temporal operators of LTL allow us to quantify (existentially and universally) w.r.t.
the traversed states. To define the satisfaction relation, we need to check properties
on future states, like some sort of “time travel.” To this aim we define the following
shifting operation on S.

Definition 12.3 (Shifting). Let (S,P) be a linear structure. For any natural number k
we let (Sk,P) denote the linear structure where

∀p ∈ P. Sk(p) = {n− k | n≥ k ∧ n ∈ S(p)}

As we did for the HM-logic, we define a notion of satisfaction |= as follows.
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Definition 12.4 (LTL satisfaction relation). Given a linear structure (S,P) we de-
fine the satisfaction relation |= for LTL formulas by structural induction:

S |= true
S |= ¬φ if it is not true that S |= φ

S |= φ0∧φ1 if S |= φ0 and S |= φ1
S |= φ0∨φ1 if S |= φ0 or S |= φ1
S |= p if 0 ∈ S(p)
S |= O φ if S1 |= φ

S |= F φ if ∃k ∈ N such that Sk |= φ

S |= G φ if ∀k ∈ N it holds that Sk |= φ

S |= φ0 U φ1 if ∃k ∈ N such that Sk |= φ1 and ∀i < k. Si |= φ0

Two LTL formulas φ and ψ are called equivalent, written φ ≡ ψ , if for any S
we have S |= φ iff S |= ψ . From the satisfaction relation it is easy to check that the
operators F and G can be expressed in terms of the until operator as follows:

F φ ≡ true U φ

G φ ≡ ¬(F ¬φ) ≡ ¬(true U ¬φ)

In the following we let
φ0⇒ φ1

def
= φ1∨¬φ0

denote logical implication.
Other commonly used operators are weak until (W ), release (R) and before (B).

They can be derived as follows:

W : The formula φ0 W φ1 is analogous to the ordinary “until” operator except for
the fact that φ0 W φ1 is also true when φ0 holds always, i.e., φ0 U φ1 requires
that φ1 holds sometimes in the future, while this is not necessarily the case for
φ0 W φ1. Formally, we have

φ0 W φ1
def
= (φ0 U φ1) ∨ G φ0

R: The formula φ0 R φ1 asserts that φ1 must be true until and including the point
where φ0 becomes true. As in the case of weak until, if φ0 never becomes true,
then φ1 must hold always. Formally, we have

φ0 R φ1
def
= φ1 W (φ1 ∧ φ0)

B: The formula φ0 B φ1 asserts that φ0 holds sometime before φ1 holds or φ1 never
holds. Formally, we have

φ0 B φ1
def
= φ0 R ¬φ1

We can graphically represent a linear structure S as a diagram like
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0→ 1→ ··· → k→ ·· ·

where additionally each node can be tagged with some of the formulas it satisfies:
we write kφ1,...,φn if Sk |= φ1∧·· ·∧φn.

For example, given p,q ∈ P, we can visualise the linear structures that satisfy
some basic LTL formulas as follows:

O p 0→ 1p→ 2→ ···
F p 0→ ·· · → (k−1)→ kp→ (k+1)→ ···
G p 0p→ 1p→ ·· · → kp→ ·· ·

p U q 0p→ 1p→ ·· · → (k−1)p→ kq→ (k+1)→ ···

p W q
{

0p→ 1p→ ··· → (k−1)p→ kq→ (k+1)→ ···
0p→ 1p→ ··· → kp→ ···

p R q
{

0q→ 1q→ ··· → (k−1)q→ kp,q→ (k+1)→ ···
0q→ 1q→ ··· → kq→ ···

p B q
{

0¬q→ 1¬q→ ··· → (k−1)¬q→ k¬q,p→ (k+1)→ ···
0¬q→ 1¬q→ ··· → k¬q→ ···

We now show some examples that illustrate the expressiveness of LTL.

Example 12.1. Consider the following LTL formulas:

G ¬p: p will never happen, so it is a safety property.
p⇒ F q: if p happens now then also q will happen sometime in the future.
G F p: p happens infinitely many times in the future, so it is a fairness property.
F G p: p will hold from some time in the future onward.

Finally, G(req⇒ (req U grant)) expresses the fact that whenever a request is
made it holds continuously until it is eventually granted.

12.2.2 Computation Tree Logic

In this section we introduce CTL and CTL∗, two logics which use trees as models of
time: computation is no longer deterministic along time, but at each instant different
possible futures can be taken. CTL and CTL∗ extend LTL with two operators which
allow us to express properties on paths over trees. The difference between CTL and
CTL∗ is that the former is a restricted version of the latter. So we start by introducing
the more expressive logic CTL∗.
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12.2.2.1 CTL∗

CTL∗ still includes the temporal operators O, F , G and U : they are called linear
operators. However, it introduces two new operators, called path operators:

E: The formula E φ (to be read “possibly φ”) means that there exists some path
that satisfies φ . In the literature it is sometimes written ∃ φ .

A: The formula A φ (to be read “inevitably φ”) means that each path of the tree
satisfies φ , i.e., that φ is satisfied along all paths. In the literature it is sometimes
written ∀ φ .

Definition 12.5 (CTL∗ formulas). The syntax of CTL∗ formulas is as follows:

φ ::= true | false | ¬φ | φ0∧φ1 | φ0∨φ1 |
p | O φ | F φ | G φ | φ0 U φ1 |
E φ | A φ

where p ∈ P is any atomic proposition.

In the case of CTL∗, instead of using linear structures, the computation of the
system over time is represented by using infinite trees as explained below.

We recall that a (possibly infinite) tree T = (V,→) is a directed graph with vertices
in V and directed arcs given by→⊆V ×V , where there is one distinguished vertex
v0 ∈V (called root) such that there is exactly one directed path from v0 to any other
vertex v ∈V .

Definition 12.6 (Infinite tree). Let T = (V,→) be a tree, with V the set of nodes, v0
the root and→⊆V ×V the parent-child relation. We say that T is an infinite tree if
→ is total on V , namely if every node has a child:

∀v ∈V. ∃w ∈V. v→ w

Definition 12.7 (Branching structure). A branching structure is a triple (T,S,P),
where P is a set of atomic propositions, T = (V,→) is an infinite tree and S : P→
℘(V ) is a function from the atomic propositions to subsets of nodes of V defined as
follows:

∀p ∈ P. S(p) = {x ∈V | x satisfies p}

In CTL∗ computations are described as infinite paths on infinite trees.

Definition 12.8 (Infinite paths). Let T = (V,→) be an infinite tree and π = v0,v1, ...
be an infinite sequence of nodes in V . We say that π is an infinite path over T if

∀i ∈ N. vi→ vi+1

Of course, we can view an infinite path π = v0,v1, ... as a function π : N→ V
such that π(i) = vi for any i ∈ N. As for the linear case, we need a shifting operator
on paths.



12.2 Temporal Logic 277

Definition 12.9 (Path shifting). Let π = v0,v1, ... be an infinite path over T and
k ∈ N. We let the infinite path πk be defined as follows:

π
k = vk,vk+1, . . .

In other words, for an infinite path π : N→V we let πk : N→V be the function
defined as πk(i) = π(k+ i) for all i ∈ N.

Definition 12.10 (CTL∗ satisfaction relation). Let (T,S,P) be a branching struc-
ture and π = v0,v1,v2, ... be an infinite path. We define the satisfaction relation |=
inductively as follows:

• state operators:

S,π |= true
S,π |= ¬φ if it is not true that S,π |= φ

S,π |= φ0∧φ1 if S,π |= φ0 and S,π |= φ1
S,π |= φ0∨φ1 if S,π |= φ0 or S,π |= φ1
S,π |= p if v0 ∈ S(p)
S,π |= O φ if S,π1 |= φ

S,π |= F φ if ∃i ∈ N such that S,π i |= φ

S,π |= G φ if ∀i ∈ N it holds that S,π i |= φ

S,π |= φ0 U φ1 if ∃i ∈ N such that S,π i |= φ1 and ∀ j < i. S,π j |= φ0

• path operators:2

S,π |= Eφ if there exists π ′ = v0,v′1,v
′
2, ... such that S,π ′ |= φ

S,π |= Aφ if for all paths π ′ = v0,v′1,v
′
2, ... we have S,π ′ |= φ

Two CTL∗ formulas φ and ψ are called equivalent, written φ ≡ ψ , if for any S,π
we have S,π |= φ iff S,π |= ψ .

Example 12.2. Consider the following CTL∗ formulas:

E O φ : is analogous to the HM-logic formula 3φ .
A G p: means that p happens in all reachable states.
E F p: means that p happens in some reachable state.
A F p: means that on every path there exists a state where p holds.
E (p U q): means that there exists a path where p holds until q.
A G E F p: in every future exists a successive future where p holds.

12.2.2.2 CTL

The formulas of CTL are obtained by restricting CTL∗. Let {O,F,G,U} be the set
of linear operators, and {E,A} be the set of path operators.

2 Note that in the case of path operators, only the first node v0 of π is relevant.
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Definition 12.11 (CTL formulas). A CTL∗ formula is a CTL formula if all of the
followings hold:

1. each path operator appears only immediately before a linear operator;
2. each linear operator appears immediately after a path operator.

In other words, CTL allows only the combined use of path operators with linear
operators, like in EO, AO, EF , AF , etc. It is evident that CTL and LTL are both3

subsets of CTL∗, but they are not equivalent to each other. Without going into the
detail, we mention that

• no CTL formula is equivalent to the LTL formula F G p;
• no LTL formula is equivalent to the CTL formula AG (p⇒ (EO q∧EO ¬q)).

Moreover, fairness is not expressible in CTL.
Finally, we note that all CTL formulas can be written in terms of the minimal set

of operators true, ¬, ∨, EG, EU , EO. In fact, for the remaining (combined) operators
we have the following logical equivalences:

EFφ ≡ E(true U φ)

AOφ ≡ ¬(EO¬φ)

AGφ ≡ ¬(EF¬φ) ≡ ¬E(true U ¬φ)

AFφ ≡ A(true U φ) ≡ ¬(EG¬φ)

A(φ U ϕ) ≡ ¬(E(¬ϕ U ¬(φ ∨ϕ))∨EG¬ϕ)

Example 12.3. All the CTL∗ formulas in Example 12.2 are also CTL formulas.

12.3 µ-Calculus

Now we introduce the µ-calculus. The idea is to add the least and greatest fixpoint
operators to modal logic. We remark that HM-logic was introduced not so much as a
language to write down system specifications, but rather as an aid to understanding
process equivalence from a logical point of view. As a matter of fact, many interesting
properties of reactive systems can be conveniently expressed as fixpoints. The two
operators that we introduce are the following:

µx. φ : is the least fixpoint of the equation x≡ φ ;
νx. φ : is the greatest fixpoint of x≡ φ .

As a rule of thumb, we can think that least fixpoints are associated with liveness
properties, and greatest fixpoints with safety properties.

3 An LTL formula φ is read as the CTL∗ formula Aφ . Namely, the structure where an LTL formula
is evaluated corresponds to a CTL* tree consisting of a set of traces.
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Definition 12.12 (µ-calculus formulas). The syntax of µ-calculus formulas is

φ ::= true | false | φ0∧φ1 | φ0∨φ1 |
p | ¬p | x | 3φ | 2φ | µx. φ | νx. φ

where p ∈ P is any atomic proposition and x ∈ X is any predicate variable.

In the following, we let F denote the set of µ-calculus formulas. To limit the
number of parentheses and ease readability of formulas, we tacitly assume that modal
operators have higher precedence than logical connectives, and that fixpoint operators
have lowest precedence, meaning that the scope of a fixpoint variable extends as far
to the right as possible.

The idea is to interpret formulas over a transition system (with vacuous transition
labels): with each formula we associate the set of states of the transition system
where the formula holds true. Then, the least and greatest fixpoint correspond quite
nicely to the notion of the smallest and largest set of states where the formulas holds,
respectively.

Since the powerset of the set of states is a complete lattice, in order to apply
the fixpoint theory we require that the semantics of any formula φ is defined using
monotone transformation functions. This is the reason why we do not include general
negation in the syntax, but only in the form ¬p for p an atomic proposition. This way,
provided that all recursively defined variables are distinct, the µ-calculus formulas
we use are said to be in positive normal form. Alternatively, we can allow general
negation and then require that in well-formed formulas any occurrence of a variable
x is preceded by an even number of negations. Then, any such formula can be put in
positive normal form by using De Morgan’s laws, double negation (¬¬φ ≡ φ ) and
dualities:

¬3φ ≡2¬φ ¬2φ ≡3¬φ ¬µx. φ ≡ νx. ¬φ [¬x/x] ¬νx. φ ≡ µx. ¬φ [¬x/x]

Let (V,→) be an LTS (with vacuous transition labels), X be the set of predicate
variables and P be a set of propositions. We introduce a function ρ : P∪X →℘(V )
which associates with each proposition and with each variable a subset of states of
the LTS. Then we define the denotational semantics of the µ-calculus, which maps
each µ-calculus formula φ to the subset of states JφKρ in which it holds (according
to ρ).

Definition 12.13 (Denotational semantics of the µ-calculus). We define the inter-
pretation function J·K : F → (P∪X →℘(V ))→℘(V ) by structural recursion on
formulas as follows:



280 12 Temporal Logic and the µ-Calculus

JtrueKρ = V

JfalseKρ = ∅
Jφ0∧φ1Kρ = Jφ0Kρ ∩ Jφ1Kρ

Jφ0∨φ1Kρ = Jφ0Kρ ∪ Jφ1Kρ

JpKρ = ρ(p)

J¬pKρ = V \ρ(p)

JxKρ = ρx

J3φKρ = { v | ∃v′ ∈ JφKρ. v→ v′ }
J2φKρ = { v | ∀v′. v→ v′⇒ v′ ∈ JφKρ }

Jµx. φKρ = fix λS. JφKρ[S/x]

Jνx. φKρ = FIX λS. JφKρ[S/x]

where FIX denotes the greatest fixpoint.

The definitions are straightforward. The only equations that need some comments
are those related to the modal operators 3φ and 2φ : in the first case, we take as
J3φKρ the set of states v that have (at least) one transition to a state v′ that satisfies
φ ; in the second case, we take as J2φKρ the set of states v such that all outgoing
transitions lead to states v′ that satisfy φ . Note that, as a particular case, a state
with no outgoing transitions trivially satisfy the formula 2φ for any φ . For example
the formula 2false is satisfied by all and only deadlock states; vice versa 3true
is satisfied by all and only non-deadlock states. Intuitively, we can note that the
modality 3φ is somewhat analogous to the CTL formula EO φ , while the modality
2 can play the role of AO φ .

Fixpoints are computed in the CPO⊥ of sets of states, ordered by inclusion:
(℘(V ),⊆). Union and intersection are of course monotone functions. Also the func-
tions associated with modal operators

λS. { v | ∃v′ ∈ S. v→ v′ } λS. { v | ∀v′. v→ v′⇒ v′ ∈ S }

are monotone. The least fixpoint of a function f : ℘(V ) →℘(V ) can then be
computed by taking the limit

⋃
n∈N f n(∅), while for the greatest fixpoint we take⋂

n∈N f n(V ). In fact, when f is monotone, we have

∅⊆ f (∅)⊆ f 2(∅)⊆ ·· · ⊆ f n(∅)⊆ ·· ·

V ⊇ f (V )⊇ f 2(V )⊇ ·· · ⊇ f n(V )⊇ ·· ·

Example 12.4 (Basic examples). Let us consider the following formulas:

µx. x: Jµx. xKρ
def
= fix λS. S =∅.

In fact, let us approximate the result in the usual way:

S0 =∅ S1 = (λS. S)S0 = S0
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νx. x: Jνx. xKρ
def
= FIX λS. S =V .

In fact, we have S0 =V and S1 = (λS. S)S0 = S0.

µx. 3x: Jµx. 3xKρ
def
= fix λS. {v | ∃v′ ∈ S. v→ v′}=∅.

In fact, we have

S0 =∅ S1 = {v | ∃v′ ∈∅. v→ v′}=∅

µx. 2x: Jµx. 2xKρ
def
= fix λS. {v | ∀v′. v→ v′⇒ v′ ∈ S}.

By successive approximations, we get

S0 = ∅
S1 = {v | ∀v′. v→ v′⇒ v′ ∈∅}= {v | v 6→}

= {v | v has no outgoing arc}
S2 = {v | ∀v′. v→ v′⇒ v′ ∈ S1}

= {v | v has outgoing paths of length at most 1}
...

Sn = {v | v has outgoing paths of length at most n−1}

We can conclude that Jµx. 2xKρ =
⋃

i∈N Si is the set of vertices whose
outgoing paths all have finite length.

νx. 2x: Jνx. 2xKρ
def
= FIX λS. {v | ∀v′,v→ v′⇒ v′ ∈ S}=V .

In fact, we have

S0 =V S1 = {v | ∀v′. v→ v′⇒ v′ ∈V}=V

µx. p∨3x: Jµx. p∨3xKρ
def
= fix λS. ρ(p)∪{v | ∃v′ ∈ S. v→ v′}.

Let us compute some approximations:

S0 = ∅
S1 = ρ(p)

S2 = ρ(p)∪{v | ∃v′ ∈ ρ(p). v→ v′}
= {v | v can reach some v′ ∈ ρ(p) in no more than one step}
...

Sn = {v | v can reach some v′ ∈ ρ(p) in no more than n−1 steps}⋃
n∈N

Sn = {v | v has a finite path to some v′ ∈ ρ(p)}

Thus, the formula is similar to the CTL formula EF p, meaning that
some node in ρ(p) is reachable.

The µ-calculus is more expressive than CTL∗ (and consequently than CTL and
LTL), in fact all CTL∗ formulas can be translated to µ-calculus formulas. This makes
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the µ-calculus probably the most studied of all temporal logics of programs. Unfortu-
nately, the increase in expressive power we get from the µ-calculus is balanced by an
equally great increase in awkwardness: we invite the reader to check for her/himself
how relatively easy it is to write down short µ-calculus formulas whose intended
meanings remain obscure after several attempts to decipher them. Still, many correct-
ness properties can be expressed in a very concise and elegant way in the µ-calculus.
The full translation from CTL∗ to the µ-calculus is quite complex and we do not
account for it here.

Example 12.5 (More expressive examples). Let us now briefly discuss some more
complicated examples:

µx. (p∧3x)∨q: corresponds to the CTL formula E(p U q).
µx. (p∧2x∧3x)∨q: corresponds to the LTL/CTL formula A(p U q). Note that

the sub-formula 3x is needed to discard deadlock states.
νx. µy. (p∧3x)∨3y: corresponds to the CTL∗ formula EGF p: given a path,

µy. (p∧3x)∨3y means that after a finite number of
steps you find a vertex where both 1) p holds, and 2) you
can reach a vertex where the property recursively holds.

Without increasing the expressive power of the µ-calculus, formulas can be ex-
tended to deal with labelled transitions, in the style of HM-logic (see Problem 12.10).

12.4 Model Checking

The problem of model checking consists of the exhaustive, possibly automatic,
verification of whether a given model of a system meets a given logic specification
of the properties the system should satisfy, such as absence of deadlocks.

The main ingredients of model checking are

• an LTS M (the model) and a vertex v (the initial state);
• a formula φ (in temporal or modal logic) you want to check.

The problem of model checking is does v in M satisfy φ?
The result of model checking should be either a positive answer or some coun-

terexample explaining one possible reason why the formula is not satisfied.
Without entering into the details, one successful approach to model checking

consists of: 1) computing a finite LTS M¬φ that is to some extent equivalent to the
negation of the formula φ under inspection; roughly, each state in the constructed
LTS represents a set of LTL formulas that hold in that state; 2) computing some
form of product between the model M and the computed LTS M¬φ ; roughly, this
corresponds to solving a non-emptiness problem for the intersection of (the languages
associated with) M and M¬φ ; 3) if the intersection is nonempty, then a finite witness
can be constructed that offers a counterexample to the validity of the formula φ in M.

In the case of µ-calculus formulas, fixpoint theory gives a straightforward (itera-
tive) implementation for a model checker by computing the set of all and only states
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that satisfy a formula by successive approximations. In model-checking algorithms,
it is often convenient to proceed by evaluating formulas with the aid of dynamic
programming. The idea is to work in a bottom-up fashion: starting from the atomic
predicates that appear in the formula, we mark all the states with the sub-formulas
they satisfy. When a variable is encountered, a separate activation of the procedure is
allocated for computing the fixpoint of the corresponding recursive definition.

For computing a single fixpoint, the length of the iteration is in general transfinite
but is bounded at worst by the cardinal after the cardinality of the lattice and in the
special case of ℘(V ) by the cardinal after the cardinality of V . In practice, many
systems can be modelled, at some level of abstraction, as finite-state systems, in
which case a finite number of iterations (|V |+ 1 at worst) suffices. When two or
more fixpoints of the same kind are nested within each other, then we can exploit
monotonicity to avoid restarting the computation of the innermost fixpoint at each
iteration of the outermost one. However, when least and greatest fixpoints are nested
in alternation, this optimisation is no longer possible and the time needed to model
check the formula is exponential w.r.t. the so-called alternation depth of fixpoints in
the formula.

From a purely theoretical perspective, the hierarchy obtained by considering
formulas ordered according to the alternation depth of fixpoint operators gives more
expressive power as the alternation depth increases: model checking in the µ-calculus
is proved to be in NP∩ coNP (the µ-calculus is closed under complementation).

From a pragmatic perspective, any reasonable specification requires at most
alternation depth 2 (i.e., it is unlikely to find correctness properties that require
alternation depth equal to or higher than 3). Moreover, the dominant factor in the
complexity of model checking is typically the size of the model rather than the size of
the formula, because specifications are often very short: sometimes even exponential
growth in the specification size can be tolerable. For these reasons, in many cases,
the aforementioned, complex translation from CTL∗ formulas to µ-calculus formulas
is able to guarantee competitive model checking.

In the case of reactive systems, the LTS is often given implicitly as the one
associated with a term of some process algebra, because in this way the structure of
the system is handled more conveniently. However, as noted in the previous chapter,
even for finite processes, the size of their actual LTS can explode.

When it becomes unfeasible to represent the whole set of states, one approach is
to use abstraction techniques. Roughly, the idea is to devise a smaller, less detailed
model by suppressing inessential data from the original, fully detailed model. Then,
as far as the correctness of the larger model follows from the correctness of the
smaller model, we are guaranteed that the abstraction is sound.

One possibility to tackle the state explosion problem is to minimise the system
according to some suitable equivalence. Note that minimisation can take place also
while combining subprocesses and not just at the end. Of course, this technique is
viable only if the minimisation preserves all properties to be checked. For example,
the validity of any µ-calculus formula is invariant w.r.t. bisimulation, thus we can
minimise LTSs up to bisimilarity before model checking them.



284 12 Temporal Logic and the µ-Calculus

Another important technique to succinctly represent large systems is to take
a symbolic approach, for example representing the sets of states where formulas
are true in terms of their boolean characteristic functions, expressed as ordered
Binary Decision Diagrams (BDDs). This approach has been very successful for the
debugging and verification of hardware circuits, but, for reasons not well understood,
software verification has proved more elusive, probably because programs lack some
form of regularity that commonly arises in electronic circuits. In the worst case, also
symbolic techniques can lead to intractably inefficient model checking.

Problems

12.1. Suppose there are two processes p1 and p2 that can access a single shared
resource r. We are given the following atomic propositions, for i = 1,2:

reqi: holds when process pi is requesting access to r;
usei: holds when process pi has got access to r;
reli: holds when process pi has released r.

Use LTL formulas to specify the following properties:

1. mutual exclusion: r is accessed by only one process at a time;
2. release: every time r is accessed by pi, it is released after a finite amount of time;
3. priority: whenever both p1 and p2 require access to r, p1 is granted access first;
4. absence of starvation: whenever pi requires access to r, it is eventually granted

access to r.

12.2. Consider an elevator system serving three floors, numbered 0 to 2. At each
floor there is an elevator door that can be open or closed, a call button, and a light
that is on when the elevator has been called. Define a set of atomic propositions, as
small as possible, to express the following properties as LTL formulas:

1. a door is not open if the elevator is not present at that floor;
2. every elevator call will be served;
3. every time the elevator serves a floor the corresponding light is turned off;
4. the elevator will always return to floor 0;
5. a request at the top floor has priority over all other requests.

12.3. Consider the CTL∗ formula φ
def
= AF G (p∨O q). Explain the property as-

sociated with it and define a branching structure where it is satisfied. Is it an LTL
formula? Is it a CTL formula?

12.4. Prove that if the CTL∗ formula AO φ is satisfied, then also the formula O A φ

is satisfied. Is the converse true?

12.5. Is it true that the CTL∗ formulas A G φ and G A φ are logically equivalent?
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12.6. Given the µ-calculus formula

φ
def
= νx. (p∨3x)∧ (q∨2x)

compute its denotational semantics and evaluate it on the LTS below:

s1 //

��

s2 //

��

s3 q

s4 // s5 // s6 p

12.7. Given the µ-calculus formula φ
def
= νx.3x, compute its denotational semantics,

spelling out what are the states that satisfy φ , and evaluate it on the LTS below:

s1,, s0oo //

��

s2

��

rr

s3 // s4

12.8. Write a µ-calculus formula φ representing the statement

‘p is always true along any path leaving the current state.’

Write the denotational semantics of φ and evaluate it on the LTS below:

s1 //p s2

~~ ��

q

s3

OO

//p s4 p,q

12.9. Write a µ-calculus formula φ representing the statement

‘there is some path where p holds until eventually q holds.’

Write the denotational semantics of φ and evaluate it on the LTS below:

s1 //

��

p s2




p

s3 //

>>

p s4 p,q

12.10. Let us extend the µ-calculus with the formulas 〈A〉φ and [A]φ , where A is
a set of labels: they represent, respectively, the ability to perform a transition with
some label a ∈ A and reach a state that satisfies φ , and the necessity to reach a state
that satisfies φ after performing any transition with label a ∈ A.

1. Define the semantics J〈A〉φKρ and J[A]φKρ .
2. When A = {a1, ...,an}, let us write 〈a1, ...,an〉φ and [a1, ...,an]φ in place of 〈A〉φ

and [A]φ , respectively. Compute the denotational semantics of the formulas
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φ1
def
= νx. ( ( (〈a〉true∧〈b〉true) ∨ p ) ∧ [a,b]x ) φ2

def
= µx. p∨〈a,b〉x

and evaluate them on the LTS below:

s2

a
��

a

,, s1
aoo b //

p
s3

a
��

b

rr

s4
b

//

a

22 s5
p



Chapter 13
π-Calculus

What’s in a name? That which we call a rose by any other name
would smell as sweet. (William Shakespeare)

Abstract In this chapter we outline the basic theory of a calculus of processes, called
the π-calculus. It is not an exaggeration to affirm that the π-calculus plays for reactive
systems the same foundational role that the λ -calculus plays for sequential systems.
The key idea is to extend CCS with the ability to send channel names, i.e., π-calculus
processes can communicate communication means. The term coined to refer to
this feature is name mobility. The operational semantics of the π-calculus is only
a bit more involved than that of CCS, while the abstract semantics is considerably
more ingenious, because it requires a careful handling of names appearing in the
transition labels. In particular, we show that two variants of strong bisimilarity
arise naturally, called early and late, with the former coarser than the latter. We
conclude by discussing weak variants of early and late bisimilarities together with
compositionality issues.

13.1 Name Mobility

The structures of today’s communication systems are not statically defined, but
they change continuously according to the needs of the users. The process algebra
we have studied in Chapter 11 is unsuitable for modelling such systems, since its
communication structure (the channels) cannot evolve dynamically. In this chapter
we present the π-calculus, an extension of CCS introduced by Robin Milner, Joachim
Parrow and David Walker in 1989, which allows us to model mobile systems. The
main features of the π-calculus are its ability to create new channel names and to
send them in messages, allowing agents to extend their connections. For example,
consider the case of the CCS-like process (with value passing)

(p | q)\a | r

and suppose that p and q can communicate over the channel a, which is private
to them, and that p and r share a channel b for exchanging messages. If we allow
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channel names to be sent as message values, then it could be the case that 1) p sends
the name a over the channel b, for example

p def
= ba.p′

for some p′; 2) q waits for a message on a, for example

q def
= a(x).q′

for some q′ that can exploit x; and 3) r wants to input a channel name on b, which it
will use to send a message m, for example

r def
= b(y).ym.r′

After the communication between p and r has taken place over the channel b, we
would like the scope of a to be extended to include the rightmost process, as in

((p′ | q) | am.r′[a/y])\a

so that q can then input m on a from the process am.r′:

((p′ | q′[m/x]) | r′[a/y])\a.

All this cannot be achieved in CCS, where restriction is a static operator. Moreover,
suppose a process s is initially running in parallel with r, for instance

(p | q)\a | (s | r).

After the communication over b between p and r, we would like the name a to be
private to p′,q and the continuation of r but not shared by s. Thus if a is already used
by s, it must be the case that after the scope extrusion a is renamed to a fresh private
name c, not available to s, for instance

( (p′[c/a] | q[c/a]) | (s | cm.r′[c/y]) )\c

so that the message cm directed to q cannot be intercepted by s.

Remark 13.1 (New syntax for restriction). To differentiate between the static restric-
tion operator of CCS and its dynamic version used in the π-calculus, we write the
latter operator in prefix form as (a)p as opposed to the CCS syntax p\a. Therefore
the initial process of the above example is written

(a)(p | q) | (s | r)

and after the communication it becomes

(c)( (p′[c/a] | q[c/a]) | (s | cm.r′[c/y]) )
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The general mechanism for handling name mobility makes the formalisation
of the semantics of the π-calculus more complicated than that of CCS, especially
because of the side conditions that serve to guarantee that certain names are fresh.

Let us start with an example that illustrates how the π-calculus can formalise a
mobile telephone system.

Example 13.1 (Mobile phones). The following figure represents a mobile phone
network: while the car travels, the phone can communicate with different bases in the
city, but just one at a time, typically the closest to its position. The communication
centre decides when the base must be changed and then the channel for accessing
the new base is sent to the car through the switch channel.

As in the dynamic stack Example 11.1 for CCS, also in this case we describe
agent behaviour by defining the reachable states:

CAR(talk,switch) def
= talk.CAR(talk,switch) + switch(xt,xs).CAR(xt,xs)

A car can (recursively) talk on the channel assigned currently by the communication
centre (action talk). Alternatively the car can receive (action switch(xt,xs)) a new
pair of channels (e.g., talk′ and switch′) and change the base to which it is connected.

In the example there are two bases, numbered 1 and 2. A generic base i ∈ [1,2]
can be in two possible states: BASEi or IDLEBASEi.

BASEi
def
= talki.BASEi + givei(xt,xs).switchi(xt,xs).IDLEBASEi

IDLEBASEi
def
= alerti.BASEi

In the first case the base is connected to the car, so either the car can talk or the
base can receive two channels from the centre on channel givei, assign them to the
variables xt and xs and send them to the car on channel switchi to allow it to change
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base. In the second case the base i becomes idle, and remains so until it is alerted by
the communication centre:

CENTRE1
def
= give1〈talk2,switch2〉.alert2.CENTRE2

CENTRE2
def
= give2〈talk1,switch1〉.alert1.CENTRE1.

The communication centre can be in different states according to which base is active.
In the example there are only two possible states for the communication centre
(CENTRE1 and CENTRE2), because only two bases are considered.

Finally we have the process which represents the entire system in the state where
the car is talking to the first base:

SYSTEM def
= CAR(talk1,switch1) | BASE1 | IDLEBASE2 | CENTRE1

Then, suppose that 1) the centre communicates the names talk2 and switch2 to
BASE1 by sending the message give1〈talk2,switch2〉; 2) the centre alerts BASE2 by
sending the message alert2; 3) BASE1 tells CAR to switch to channels talk2 and
switch2, by sending the message switch1(talk2,switch2). Correspondingly, we have

SYSTEM τ−→ τ−→ τ−→ CAR(talk2,switch2) | IDLEBASE1 | BASE2 | CENTRE2

Example 13.2 (Secret channel via trusted server). As another example, consider two
processes Alice (A) and Bob (B) that want to establish a secret channel using a trusted
server (S) with which they already have trustworthy communication links cAS (for
Alice to send private messages to the server) and cSB (for the server to send private
messages to Bob). The system can be represented by the expression

SY S def
= (cAS)(cSB)(A | S | B)

where restrictions (cAS) and (cSB) guarantee that channels cAS and cSB are not visible
to the environment and the processes A, S and B are specified as follows:

A def
= (cAB)cAScAB.cABm.A′ S def

=!cAS(x).cSBx.nil B def
= cSB(y).y(w).B′

Alice defines a private name cAB that she wants to use for communicating with B
(see the restriction (cAB)), then Alice sends the name cAB to the trusted server over
their private shared link cAS (output prefix cAScAB) and finally sends the message m
on the channel cAB (output prefix cABm) and continues as A′. The server continuously
waits for messages from Alice on channel cAS (input prefix cAS(x)) and forwards the
content to Bob (output prefix cSBx). Here the replication operator ! allows S to serve
multiple requests from Alice by issuing multiple instances of the server process. Bob
waits to receive a name to replace y from the server over the channel cSB (input prefix
cSB(y)) and then uses y to input the message from Alice (input prefix y(w)) and then
continues as B′[cAB/y,

m /w].
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13.2 Syntax of the π-Calculus

The π-calculus has been introduced to model communicating systems where channel
names, representing addresses and links, can be created and forwarded. To this aim
we rely on a set of channel names x,y,z, ... and extend the CCS actions with the ability
to send and receive channel names. In these notes we present the monadic version of
the calculus, namely the version where names can be sent only one at a time. The
polyadic version, as used in Example 13.1, is briefly discussed in Problem 13.2.

Definition 13.1 (π-calculus processes). We introduce the π-calculus syntax, with
productions for processes p and actions π:

p ::= nil | π.p | [x = y]p | p+ p | p|p | (y)p | !p

π ::= τ | x(y) | xy

The meaning of the process operators is the following:

nil: is the inactive agent;
π.p: is an agent which can perform an action π and then act like p;
[x = y]p: is the conditional process; it behaves like p if x = y, otherwise stays idle;
p+q: is the nondeterministic choice between two processes;
p|q: is the parallel composition of two processes;
(y)p: denotes the restriction of the channel y with scope p;1

!p: is a replicated process: it behaves as if an unbounded number of con-
current occurrences of p were available, all running in parallel. It is
analogous to the (unguarded) CCS recursive process rec x. (x|p).

The meaning of the actions π is the following:

τ: is the invisible action, as usual;
x(y): is the input on channel x; the received value is stored in y;
xy: is the output on channel x of the name y.

In the above cases, we call x the subject of the communication (i.e., the channel
name where the communication takes place) and y the object of the communication
(i.e., the channel name that is transmitted or received). As in the λ -calculus, in the
π-calculus we have bound and free occurrence of names. The binding operators
of the π-calculus are input and restriction: both in x(y).p and (y)p the name y is
bound with scope p. On the contrary, the output prefix is not binding, i.e., if we take
the process xy.p then the name y is free. Formally, we define the sets of free and
bound names of a process by structural recursion as in Figure 13.1. Note that for both
x(y).p and xy.p the name x is free in p. As usual, we take (abstract) processes up to
α-renaming of bound names and write p[y/x] for the capture-avoiding substitution
of all free occurrences of the name x with the name y in p.

1 In the literature the restriction operator is sometimes written (νy)p to denote the fact that the name
y is “new” to p: we prefer not to use the symbol ν to avoid any conflict with the maximal fixpoint
operator, as denoted, e.g., in the µ-calculus (see Chapter 12).
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fn(nil) def
= ∅ bn(nil) def

= ∅
fn(τ.p) def

= fn(p) bn(τ.p) def
= bn(p)

fn(x(y).p) def
= {x}∪ (fn(p)\{y}) bn(x(y).p) def

= {y}∪bn(p)

fn(xy.p) def
= {x,y}∪ fn(p) bn(xy.p) def

= bn(p)

fn([x = y]p) def
= {x,y}∪ fn(p) bn([x = y]p) def

= bn(p)

fn(p0 + p1)
def
= fn(p0)∪ fn(p1) bn(p0 + p1)

def
= bn(p0)∪bn(p1)

fn(p0|p1)
def
= fn(p0)∪ fn(p1) bn(p0|p1)

def
= bn(p0)∪bn(p1)

fn((y)p) def
= fn(p)\{y} bn((y)p) def

= {y}∪bn(p)

fn(!p) def
= fn(p) bn(!p) def

= bn(p)

Fig. 13.1: Free names and bound names of processes

Unlike for CCS, the scope of the name y in the restricted process (y)p can be
dynamically extended to include other processes than p by name extrusion. The
possibility to enlarge the scope of a restricted name is a very useful, intrinsic feature
of the π-calculus. In fact, in the π-calculus, channel names are data that can be
transmitted, so the process p can send the private name y to another process q which
thus falls under the scope of y (see Section 13.1). Name extrusion allows us to modify
the structure of private communications between agents. Moreover, it is a convenient
way to formalise secure data transmission, as implemented, e.g., via cryptographic
protocols.

13.3 Operational Semantics of the π-Calculus

We define the operational semantics of the π-calculus by deriving an LTS via in-
ference rules. Well-formed formulas are written p α−→ q for suitable processes p,q
and label α . The syntax of labels is richer than the one used in the case of CCS, as
defined next.

Definition 13.2 (Action labels). The possible actions α that label the transitions are

τ: the silent action;
x(y): the input of a fresh name y on channel x;
xy: the free output of name y on channel x;
x(y): the bound output (called name extrusion) of a restricted name y on channel x.

The definition of free names fn(·) and bound names bn(·) is extended to labels as

defined in Figure 13.2. Moreover, we let n(α)
def
= fn(α)∪bn(α) denote the set of all

names appearing in α .
Most transitions p α−→ q can be read as the computational evolution of p to q when

the action α is performed, analogously to the ones for CCS. The only exceptions are

input-labelled transitions: if p
x(y)−−→ p′ for some x and (fresh) y, then the computational



13.3 Operational Semantics of the π-Calculus 293

fn(τ) def
= ∅ bn(τ) def

= ∅
fn(x(y)) def

= {x} bn(x(y)) def
= {y}

fn(xy) def
= {x,y} bn(xy) def

= ∅
fn(x(y)) def

= {x} bn(x(y)) def
= {y}

Fig. 13.2: Free names and bound names of labels

evolution of p depends on the actual received name z to be substituted for y in p′,
but the input transition is just given for a generic formal parameter y, not for all its
possible instances. For example, it may well be the case that one of the free names of
p is received, while y stands just for fresh names. The main consequence is that, in
the bisimulation game, the attacker can pick a received name z and the defender must

choose an input transition q
x(y)−−→ q′ such that p′[z/y] and q′[z/y] are related (not p′

and q′). Depending on the moment when the name is chosen by the attacker, before
or after the move of the defender, two different notions of bisimulation arise, as
explained in Section 13.5.

We can now present the inference rules for the operational semantics of the
π-calculus and briefly comment on them.

13.3.1 Inactive Process

As in the case of CCS, there is no rule for the inactive process nil: it has no outgoing
transition.

13.3.2 Action Prefix

There are three rules for an action-prefixed process π.p, one for each possible shape
of the prefix π:

(Tau)
τ.p τ−→ p

The rule (Tau) allows a process to perform invisible actions.

(Out)
x y.p

x y−→ p

As we said, π-calculus processes can exchange messages which can contain informa-
tion (i.e., channel names). The rule (Out) allows a process to send the name y on the
channel x.
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(In) w 6∈ fn((y)p)
x(y).p

x(w)−−→ p[w/y]

The rule (In) allows a process to receive as input over x some channel name. The
label x(w) records that some formal name w is received, which is substituted for y in
the continuation process p. In order to avoid name clashes, we assume w does not
appear as a free name in (y)p, i.e., the transition is defined only when w is fresh. Of
course, as a special case, w can be y. The side condition may appear unacceptable,
as possibly known names could be received, but this is convenient to express two
different kinds of abstract semantics over the same LTS, as we will discuss later in
Sections 13.5.1 and 13.5.2. For example, we have the transitions

x(y).yz.nil
x(w)−−→ wz.nil wz−→ nil

but we do not have the transition (because z ∈ fn((y)yz.nil))

x(y).yz.nil �
�x(z)−−→zz.nil

Remark 13.2. The rule (In) introduces an infinite branching, because there are in-
finitely many fresh names w that can be substituted for y. One could try to improve
the situation by choosing a standard representative, but such a representative cannot
be unique for all contexts (see Problem 13.10). Another possibility is to introduce a
special symbol, say •, to denote that in the continuation p[•/y] (no longer a π-calculus
process) some actual argument should be provided.

13.3.3 Name Matching

(Match)
p α−→ p′

[x = x]p α−→ p′

The rule (Match) allows a process to check the equality of names before releasing
p. If the matching condition is not satisfied the execution halts. Name matching can
be used to write a process that receives a name and then tests this name to choose
what to do next. For example, a login process for an account whose password is pwd
could be written login(y).[y = pwd]p.

13.3.4 Choice

(SumL)
p α−→ p′

p+q α−→ p′
(SumR)

q α−→ q′

p+q α−→ q′
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The rules (SumL) and (SumR) allow the system p+ q to behave as either p or q.
They are completely analogous to the rules for choice in CCS.

13.3.5 Parallel Composition

There are six rules for parallel composition. Here we present the first four. The
remaining two rules deal with name extrusion and are presented in Section 13.3.7.

(ParL)
p α−→ p′

bn(α)∩ fn(q) =∅
p | q α−→ p′ | q

(ParR)
q α−→ q′

bn(α)∩ fn(p) =∅
p | q α−→ p | q′

As for CCS, the two rules (ParL) and (ParR) allow the interleaved execution of two
π-calculus agents. The side conditions guarantee that the bound names in α (if any)
are fresh w.r.t. the idle process. For example, a valid transition is

x(y).yz.nil | w(u).nil
x(v)−−→ vz.nil | w(u).nil

Instead, we do not allow the transition

x(y).yz.nil | w(u).nil �
��x(w)−−→wz.nil | w(u).nil

because the received name w∈ bn(x(w)) clashes with the free name w∈ fn(w(u).nil).

(ComL)
p x z−→ p′ q

x(y)−−→ q′

p | q τ−→ p′ | (q′[z/y])
(ComR)

p
x(y)−−→ p′ q x z−→ q′

p | q τ−→ p′[z/y] | q′

The rules (ComL) and (ComR) allow the synchronisation of two parallel processes.
The formal name y is replaced with the actual name z in the continuation of the
receiver. For example, we can derive the transition

x(y).yz.nil |xz.y(v).nil τ−→ zz.nil |y(v).nil

13.3.6 Restriction

(Res)
p α−→ p′

y 6∈ n(α)
(y)p α−→ (y)p′

The rule (Res) expresses the fact that if a name y is restricted on top of the process p,
then any action that p can perform and that does not involve y can be performed by
(y)p.
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13.3.7 Scope Extrusion

Now we present the most important rules of the π-calculus, (Open) and (Close),
dealing with scope extrusion of channel names. Rule (Open) makes public a private
channel name, while rule (Close) restricts again the name, but with a broader scope.

(Open)
p

x y−→ p′
y 6= x ∧ w 6∈ fn((y)p)

(y)p
x(w)−−→ p′[w/y]

The rule (Open) publishes the private name w, which is guaranteed to be fresh. Of
course, as a special case, we can take w = y.

Remark 13.3. The rule (Open), like the rule (In), introduces an infinite branching,
because there are infinitely many fresh names w that can be taken. The main dif-

ference is that, in the bisimulation game, when the move p
x(w)−−→ p′ of the attacker

is matched by the move q
x(w)−−→ q′ of the defender, then p′ and q′ must be directly

related, i.e., it is not necessary to check that p′[z/w] and q′[z/w] are related for any z,
because extruded names must be fresh and all fresh names are already accounted for
by bound output transitions.

(CloseL) p
x (w)−−−→ p′ q

x(w)−−→ q′

p | q τ−→ (w)(p′ | q′)
(CloseR) p

x(w)−−→ p′ q
x (w)−−−→ q′

p | q τ−→ (w)(p′ | q′)

The rules (CloseL) and (CloseR) transform the object w of the communication over
x into a private channel between p and q. Freshness of w is guaranteed by rules (In),
(Open), (ParL) and (ParR). For example, we have

x(y).yz.nil |(z)xz.z(y).nil τ−→ (u)(uz.nil |u(y).nil)

13.3.8 Replication

(Rep)
p | !p α−→ p′

!p α−→ p′

The last rule deals with replication. It allows us to replicate a process as many times
as needed, in a recursive fashion, without consuming it. Notice that !p is also able to
perform synchronisations between two copies of p, if it is possible at all.
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13.3.9 A Sample Derivation

Example 13.3 (Scope extrusion). We conclude this section by showing an example
of the use of the rule system. Let us consider the following system:

(((y)xy.p) | q) | x(z).r

where p,q,r are π-calculus processes. The process (y)x y.p would like to set up a
private channel with x(z).r, which however should remain hidden from q. By using
the inference rules of the operational semantics we can proceed in a goal-oriented
fashion to find a derivation for the corresponding transition:

(((y)xy.p) | q) | x(z).r α−→ s

↖(CloseL), α=τ, s=(w)(s1 | r1)
((y)xy.p) | q x(w)−−→ s1, x(z).r

x(w)−−→ r1

↖(ParL), s1=p1 | q, w6∈fn(q) (y)xy.p
x(w)−−→ p1, x(z).r

x(w)−−→ r1

↖(Open), p1=p2[w/y], w6∈fn((y).p) xy.p
xy−→ p2, x(z).r

x(w)−−→ r1

↖∗(Out)+(In), r1=r[w/z], p2=p, w6∈fn((z).r) �

so we have

p2 = p

p1 = p2[
w/y] = p[w/y]

r1 = r[w/z]

s1 = p1 | q = p[w/y] | q
s = (w)(s1 | r1) = (w)( (p[w/y] | q) | (r[w/z]) )

α = τ

In conclusion

(((y)xy.p) | q) | x(z).r τ−→ (w)( (p[w/y] | q) | (r[w/z]) )

under the condition that w is fresh, i.e., that w 6∈ fn(q)∪ fn((y)p)∪ fn((z)r).

13.4 Structural Equivalence in the π-Calculus

As we have already noticed for CCS, there are different terms representing essentially
the same process. As the complexity of the calculus increases, it is more and more
convenient to manipulate terms up to some intuitive structural axioms. In the follow-
ing we denote by ≡ the least congruence2 over π-calculus processes that includes

2 This means that ≡ is reflexive, symmetric, transitive and closed under context embedding.
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p+nil ≡ p p+q ≡ q+ p (p+q)+ r ≡ p+(q+ r)
p | nil ≡ p p | q ≡ q | p (p | q) | r ≡ p | (q | r)
(x)nil ≡ nil (y)(x)p ≡ (x)(y)p (x)(p | q) ≡ p | (x)q if x /∈ fn(p)

[x = y]nil ≡ nil [x = x] p ≡ p p | !p ≡ !p

Fig. 13.3: Axioms for structural equivalence

α-conversion of bound names and that is induced by the set of axioms in Figure 13.3.
The relation ≡ is called structural equivalence.

13.4.1 Reduction Semantics

The operational semantics of the π-calculus is much more complicated than that of
CCS because it needs to handle name passing and scope extrusion. By exploiting
structural equivalence we can define a so-called reduction semantics that is simpler
to understand. The idea is to define an LTS with silent labels only that models all the
interactions that can take place in a process, without considering interactions with
the environment. This is accomplished by first rewriting the process to a structurally
equivalent normal form and then applying basic reduction rules. In fact it can be
proved that for each π-calculus process p there exist

• a finite number of names x1,x2, ...,xk;
• a finite number of guarded sums3 s1,s2, ...,sn;
• and a finite number of processes p1, p2, ..., pm, such that

P≡ (x1) · · ·(xk)(s1 | · · · | sn | !p1 | · · · | !pm)

Then, a reduction is either a silent action performed by some si or a communication
from an input prefix of say si with an output prefix of say s j. We write the reduction
relation as a binary relation on processes using the notation p 7→ q to indicate that p
reduces to q in one step. The rules defining the relation 7→ are the following:

τ.p+ s 7→ p (x(y).p1 + s1)|(xz.p2 + s2) 7→ p1[z/y]|p2

p 7→ p′

p|q 7→ p′|q
p 7→ p′

(x)p 7→ (x)p′
p≡ q q 7→ q′ q′ ≡ p′

p 7→ p′

The reduction semantics can be put in correspondence with the (silent transitions
of the) labelled operational semantics by the following theorem.

Lemma 13.1 (Harmony lemma). For any π-calculus processes p, p′ and any action
α we have that

3 They are nondeterministic choices whose arguments are action-prefixed processes, i.e., they take
the form π1.p1 + · · ·+πh.ph.
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1. ∃q. p≡ q α−→ p′ implies that ∃q′. p α−→ q′ ≡ p′;
2. p 7→ p′ if and only if ∃q′. p τ−→ q′ ≡ p′.

Proof. We only sketch the proof.

1. The first fact can be proved by showing that the thesis holds for each single appli-
cation of any structural axiom and then proving the general case by mathematical
induction on the length of the proof of structural equivalence of p and q.

2. The second fact requires us to prove the two implications separately:

⇒) We prove first that, if p 7→ p′, then we can find equivalent processes r ≡ p
and r′ ≡ p′ in suitable form, such that r τ−→ r′. Finally, from p≡ r τ−→ r′ we
conclude by the first fact that ∃q′ ≡ r′ such that p τ−→ q′, since q′ ≡ p′ by
transitivity of ≡.

⇐) After showing that, for any p,q, whenever p α−→ q then we can find suitable
processes p′ ≡ p and q′ ≡ q in normal form, we prove, by rule induction
on p τ−→ p′, that for any p, p′, if p τ−→ p′, then p 7→ p′, from which the thesis
follows immediately. ut

13.5 Abstract Semantics of the π-Calculus

Now we present an abstract semantics of the π-calculus, namely we disregard the
syntax of processes but focus on their behaviours. As we saw in CCS, one of the main
goals of abstract semantics is to find the correct degree of abstraction, depending
on the properties that we want to study. Thus also in this case there are many kinds
of bisimulations that lead to different bisimilarities, which are useful in different
circumstances.

We start from the strong bisimulation of the π-calculus, which is an extended
version of the strong bisimulation of CCS, here complicated by the side conditions on
bound names of actions and by the fact that, after an input, we want the continuation
processes to be equivalent for any received name. An important new feature of
the π-calculus is the choice of the time when the names used as objects of input
transitions are assigned their actual values. If they are assigned before the choice of
the (bi)simulating transition, namely if the choice of the transition may depend on the
assigned value, we get the early bisimulation. Instead, if the choice must hold for all
possible names, we have the late bisimulation case. As we will see shortly, the second
option leads to a finer semantics. Finally, we will present the weak bisimulation for
the π-calculus. In all the above cases, the congruence property is not satisfied by the
largest bisimulations, so that the equivalences must be closed under suitable contexts
to get the corresponding observational congruences.
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13.5.1 Strong Early Ground Bisimulations

In early bisimulation we require that for each name w that an agent can receive on a
channel x there exists a state q′ in which the bisimilar agent will be after receiving w
on x. This means that the bisimilar agent can choose a different transition (and thus a
different state q′) depending on the observed name w.

Formally, a binary relation S on π-calculus agents is a strong early ground bisim-
ulation if

∀p,q. p S q ⇒



∀p′. if p τ−→ p′ then ∃q′. q τ−→ q′ and p′ S q′

∀x,y, p′. if p
xy−→ p′ then ∃q′. q

xy−→ q′ and p′ S q′

∀x,y, p′. if p
x(y)−−→ p′ with y 6∈ fn(q),

then ∃q′. q
x(y)−−→ q′ and p′ S q′

∀x,y, p′. if p
x(y)−−→ p′ with y 6∈ fn(q),

then ∀w. ∃q′. q
x(y)−−→ q′ and p′[w/y] S q′[w/y]

(and vice versa)

Of course, “vice versa” means that the other four cases are present, where q challenges
p to (bi)simulate its transitions. Note that in the case of the silent label τ or output
labels xy the definition of bisimulation is as expected. The case of bound output labels
x(y) has the additional condition y 6∈ fn(q) as it makes sense to consider only moves
where y is fresh for both p and q.4 The more interesting case is that of input labels
x(y): here we have the same condition y 6∈ fn(q) as in the case of bound output (for
exactly the same reason), but additionally we require that for all possible received
names w we are able to show p′[w/y] S q′[w/y] for suitable q′. Notice that also names
w which are not fresh (namely that appear free in p′ and q′) can replace variable y.
This is the reason why we required y to be fresh in the first place. It is important to
remark that different moves of q can be chosen depending on the received value w:
this is the main feature of early bisimilarity.

The very same definition of strong early ground bisimulation can be written more
concisely by grouping together the three cases of silent label, output labels and bound
output labels in the same clause:

∀p,q. p S q ⇒



∀α, p′. if p α−→ p′ with α 6= x(y) ∧ bn(α)∩ fn(q) =∅,
then ∃q′. q α−→ q′ and p′ S q′

∀x,y, p′. if p
x(y)−−→ p′ with y 6∈ fn(q),

then ∀w. ∃q′. q
x(y)−−→ q′ and p′[w/y] S q′[w/y]

(and vice versa)

4 In general, a bisimulation can relate processes whose sets of free names are different, as they
are not necessarily used. For example, we want to relate p and p | q when q is deadlocked, even if
fn(q) 6=∅, so the condition y 6∈ fn(p | q) is necessary to allow p | q to (bi)simulate all bound output
moves of p, if any.
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Remark 13.4. While the second clause introduces universal quantification over the
received names, it is enough to check that the condition p′[w/y] S q′[w/y] is satisfied
for all w ∈ fn(p′)∪ fn(q′) and for a single fresh name w 6∈ fn(p′)∪ fn(q′), i.e., for a
finite set of names.

Definition 13.3 (Early bisimilarity ∼E ). Two π-calculus agents p and q are early
bisimilar, written p∼E q, if there exists a strong early ground bisimulation S such
that p S q.

Example 13.4 (Early bisimilar processes). Let us consider the processes

p def
= x(y).τ.nil + x(y).nil q def

= p + x(y).[y = z]τ.nil

whose transitions are (for any fresh name u)

p
x(u)−−→ τ.nil q

x(u)−−→ τ.nil

p
x(u)−−→ nil q

x(u)−−→ nil

q
x(u)−−→ [u = z]τ.nil

The two processes p and q are early bisimilar. On the one hand, it is obvious that q
can simulate all moves of p. On the other hand, let q perform an input operation on
x by choosing the rightmost option. Then, we need to find, for each received name

w to be substituted for u, a transition p
x(u)−−→ p′ such that p′[w/u] is early bisimilar

to [w = z]τ.nil. If the received name is w = z, then the match is satisfied and p can
choose to perform the left input operation to reach the state τ.nil, which is early
bisimilar to [z = z]τ.nil. Otherwise, if w 6= z, then the match condition is not satisfied
and [w = z]τ.nil is deadlock, so p can choose to perform the right input operation
and reach the deadlock state nil. Notably, in the early bisimulation game, the received
name is known prior to the choice of the transition by the defender.

13.5.2 Strong Late Ground Bisimulations

In the case of late bisimulation, we require that, if an agent p has an input transition
to p′, then there exists a single input transition of q to q′ such that p′ and q′ are
related for any received value, i.e., q must choose the transition without knowing
what the received value will be.

Formally, a binary relation S on π-calculus agents is a strong late ground bisimu-
lation if (in concise form)



302 13 π-Calculus

∀p,q. p S q ⇒



∀α, p′. if p α−→ p′ with α 6= x(y) ∧ bn(α)∩ fn(q) =∅,
then ∃q′. q α−→ q′ and p′ S q′

∀x,y, p′. if p
x(y)−−→ p′ with y 6∈ fn(q),

then ∃q′. q
x(y)−−→ q′ and ∀w. p′[w/y] S q′[w/y]

(and vice versa)

The only difference w.r.t. the definition of strong early ground bisimulation is that,
in the second clause, the order of quantifiers ∃q′ and ∀w is inverted.

Remark 13.5. In the literature, early and late bisimulations are often defined over
two different transition systems. For example, if only early bisimilarity is considered,
then the labels for input transitions could contain the actual received name, which
can be either free or fresh. We have chosen to define a single transition system to
give a uniform presentation of the two abstract semantics.

Definition 13.4 (Late bisimilarity ∼L). Two π-calculus agents p and q are said to
be late bisimilar, written p∼L q if there exists a strong late ground bisimulation S
such that p S q.

The next example illustrates the difference between late and early bisimilarities.

Example 13.5 (Early vs late bisimulation). Let us consider again the early bisimilar
processes p and q from Example 13.4. When late bisimilarity is considered, then
the two agents are not equivalent. In fact p should find a state which can handle all
the possible names received on x. If the leftmost choice is selected, then τ.nil is
equivalent to [w = z].τ.nil only when the received value w = z but not in the other
cases. On the other hand, if the right choice is selected, then nil is equivalent to
[w = z].τ.nil only when w 6= z.

As the above example suggests, it is possible to prove that early bisimilarity is
strictly coarser than late: if p and q are late bisimilar, then they are early bisimilar.

13.5.3 Compositionality and Strong Full Bisimilarities

Unfortunately both early and late ground bisimilarities are not congruences, even in
the strong case, as shown by the following counterexample.

Example 13.6 (Ground bisimilarities are not congruences). Let us consider the fol-
lowing agents:

p def
= xx.nil | x′(y).nil q def

= xx.x′(y).nil + x′(y).xx.nil

We leave the reader to check that the agents p and q are bisimilar (according to both
early and late bisimilarities). Now, in order to show that ground bisimulations are not
congruences, we define the following context:
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C[·] = z(x′).[·]

By plugging p and q into the hole of C[·] we get

C[p] = z(x′).(xx.nil | x′(y).nil) C[q] = z(x′).(xx.x′(y).nil + x′(y).xx.nil)

C[p] and C[q] are not early bisimilar (and thus not late bisimilar). In fact, suppose
the name x is received on z: we need to compare the agents

p′ def
= xx.nil | x(y).nil q′ def

= xx.x(y).nil + x(y).xx.nil

Now p′ can perform a τ-transition, but q′ cannot.

The problem illustrated by the previous example is due to aliasing, and it appears
often in programming languages with both global variables and parameter passing to
procedures. It can be solved by defining a finer relation between agents called strong
early full bisimilarity and defined as follows:

p'E q ⇔ pσ ∼E qσ for every substitution σ

where a substitution σ is a function from names to names that is equal to the identity
function almost everywhere (i.e., it differs from the identity function only on a finite
number of elements of the domain).

Analogously, we can define strong late full bisimilarity 'L by letting

p'L q ⇔ pσ ∼L qσ for every substitution σ

13.5.4 Weak Early and Late Ground Bisimulations

As for CCS, we can define the weak versions of transitions α
=⇒ and of bisimulation

relations. The definition of weak transitions is the same as in CCS: 1) we write p τ
=⇒ q

if p can reach q via a possibly empty sequence of τ-transitions; and 2) we write
p α
=⇒ q for α 6= τ if there exist p′,q′ such that p τ

=⇒ p′ α−→ q′ τ
=⇒ q.

The definition of weak early ground bisimulation S is then the following:

∀p,q. p S q ⇒



∀α, p′. if p α−→ p′ with α 6= x(y) ∧ bn(α)∩ fn(q) =∅,
then ∃q′. q α

=⇒ q′ and p′ S q′

∀x,y, p′. if p
x(y)−−→ p′ with y 6∈ fn(q),

then ∀w. ∃q′. q
x(y)
==⇒ q′ and p′[w/y] S q′[w/y]

(and vice versa)

So we define the corresponding weak early bisimilarity ≈E as follows:
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p≈E q ⇔ p S q for some weak early ground bisimulation S

It is possible to define weak late ground bisimulation and weak late bisimilarity
≈L in a similar way (see Problem 13.9).

As the reader might expect, weak (early and late) bisimilarities are not congruences
due to aliasing, as was already the case for strong bisimilarities. In addition, weak
(early and late) bisimilarities are not congruences for a choice context, as was already
the case for CCS. Both problems can be fixed by combining the solutions we have
shown for weak observational congruence in CCS and for strong (early and late) full
bisimilarities.

Problems

13.1. The asynchronous π-calculus allows only outputs with no continuation, i.e.,
it allows output atoms of the form x〈y〉 but not output prefixes, yielding a smaller
calculus.5 Show that any process in the original π-calculus can be represented in
the asynchronous π-calculus using an extra (fresh) channel to simulate explicit
acknowledgement of name transmission. Since a continuation-free output can model
a message in transit, this fragment shows that the original π-calculus, which is
intuitively based on synchronous communication, has an expressive asynchronous
communication model inside its syntax.

13.2. The polyadic π-calculus allows more than one name to be communicated in a
single action:

x〈z1, ...,zn〉.P (polyadic output) and x(z1, ...,zn).P (polyadic input).

Show that this polyadic extension can be encoded in the monadic calculus (i.e., the
ordinary π-caculus) by passing the name of a private channel through which the
multiple arguments are then transmitted, one by one, in sequence.

13.3. A higher-order π-calculus can be defined where not only names but processes
are sent through channels, i.e., action prefixes of the form x(Y ).p and x〈P〉.p are
allowed where Y is a process variable and P a process. Davide Sangiorgi established
the surprising result that the ability to pass processes does not increase the expressivity
of the π-calculus: passing a process P can be simulated by just passing a name that
points to P instead. Formalise this intuition by showing how to encode higher-order
processes in ordinary ones.

13.4. Prove that x 6∈ fn(p) implies (x)p≡ p, where ≡ is the structural congruence.

13.5. Exhibit two π-calculus agents p and q such that p'E q but fn(p) 6= fn(q).
5 Equivalently, one can take the fragment of the π-calculus such that for any subterm of the form
xy.p it must be that p = nil.
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13.6. As needed in the proof of the Harmony Lemma 13.1, prove that for any
structural equivalence axiom p ≡ p′ and for any transition p′ α−→ q′ there exists a
transition p α−→ q for some q≡ q′.

13.7. Prove the following properties for the π-calculus, where ∼E is the strong early
ground bisimilarity:

(x)(p | q)∼E p | (x)q if x 6∈ fn(p) (x)(p | q)∼E p | (x)q (x)(p | q)∼E ((x)p) | (x)q.

offering counterexamples if the properties do not hold.

13.8. Prove that strong early ground bisimilarity is a congruence for the restriction
operator. Distinguish the case of input action. Assume that if S is a bisimulation, also
S′ = {(σ(x),σ(y))|(x,y) ∈ S} is a bisimulation, where σ is a one-to-one renaming.

13.9. Spell out the definition of weak late ground bisimulation and weak late bisimi-
larity ≈L.

13.10. In the π-calculus, infinite branching is a serious drawback for finite verifica-
tion. Show that agents

p def
= x(y).yy.nil q def

= (y)xy.yynil

are infinitely branching. Modify the input axiom, the open rule, and possibly the
parallel composition rule by limiting to one the number of different fresh names
which can be assigned to the new name. Also modify the input clause for early
bisimulation by limiting the set of possible continuations by substituting all the
free names and only one fresh name. Discuss the possible criteria for choosing the
fresh name, e.g., the first, in some order, name which is not free in the agent. Check
whether your criteria make agents p and r bisimilar or not, where

r def
= x(y).(yy.nil | (z)zw.nil)

(note that (z)zw.nil is just a deadlock component).
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This part focuses on models and logics for probabilistic and stochastic systems. Chap-
ter 14 presents the theory of random processes and Markov chains. Chapter 15 studies
(reactive and generative) probabilistic models of computation with observable actions
and sources of nondeterminism together with a specification logic. Chapter 16 defines
the syntax and operational and abstract semantics of PEPA, a well-known high-level
language for the specification and analysis of stochastic, interactive systems.



Chapter 14
Measure Theory and Markov Chains

The future is independent of the past, given the present. (Markov
property as folklore)

Abstract The future is largely unpredictable. Nondeterminism allows modelling of
some phenomena arising in reactive systems, but it does not allow a quantitative
estimation of how likely is one event w.r.t. another. We use the term random or proba-
bilistic to denote systems where the quantitative estimation is possible. In this chapter
we present well-studied models of probabilistic systems, called random processes
and Markov chains in particular. The second come in two flavours, depending on the
underlying model of time (discrete or continuous). Their key feature is called the
Markov property and it allows us to develop an elegant theoretical setting, where it
can be conveniently estimated, e.g., how long a system will sojourn in a given state,
or the probability of finding the system in a given state at a given time or in the long
run. We conclude the chapter by discussing how bisimilarity equivalences can be
extended to Markov chains.

14.1 Probabilistic and Stochastic Systems

In previous chapters we have exploited nondeterminism to represent choices and
parallelism. Probability can be viewed as a refinement of nondeterminism, where it
can be expressed that some choices are more likely or more frequent than others. We
distinguish two main cases: probabilistic and stochastic models.

Probabilistic models associate a probability with each operation. If many opera-
tions are enabled at the same time, then the system uses the probability measure to
choose the action that will be executed next. As we will see in Chapter 15, models
with many different combinations of probability, nondeterminism and observable
actions have been studied.

In stochastic models each event has a duration. The model binds a random variable
to each operation. This variable represents the time necessary to execute the operation.
The models we will study use exponentially distributed variables, associating a rate
with each event. Often in stochastic systems there is no explicit nondeterministic
choice: when a race between events is enabled, the fastest operation is chosen.
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We start this chapter by introducing some basic concepts of measure theory on
which we will rely in order to construct probabilistic and stochastic models. Then
we will present one of the most-used stochastic models, called Markov chains. A
Markov chain, named after the Russian mathematician Andrey Markov (1856–1922),
is characterised by the fact that the probability of evolving from one state to another
depends only on the current state and not on the sequence of events that preceded it
(e.g., it does not depend on the states traversed before reaching the current one). This
feature, called the Markov property, essentially states that the system is memoryless,
or rather that the relevant information about the past is entirely contained in the
present state. A Markov chain allows us to predict important statistical properties
about the future behaviour of a system. We will discuss both the discrete time and
the continuous time variants of Markov chains and we will examine some interesting
properties which can be studied relying on probability theory.

14.2 Probability Space

A probability space allows modelling of experiments with some degree of random-
ness. It comprises a set Ω of all possible outcomes (called elementary events) and
a set A of events that we are interested in. An event is just a set of outcomes, i.e.,
A ⊆℘(Ω), but in general we are not interested in the whole powerset ℘(Ω), espe-
cially because when Ω is infinite we are not able to assign reasonable probabilities
to all events in ℘(Ω). However, the set A should include at least the impossible
event ∅ and the certain event Ω . Moreover, since events are sets, it is convenient to
require that A is closed under the usual set operations. Thus if A and B are events,
then also their intersection A∩B, their union A∪B and complement A should be
events, so that we can express, e.g., probabilities about the fact that two events will
happen together, or about the fact that some event is not going to happen. If this is the
case, then A is called a field. We call it a σ -field if it is also closed under countable
union of events. A σ -field is indeed the starting point to define measurable spaces
and hence probability spaces.

Definition 14.1 (σ -field). Let Ω be a set of elementary events and A ⊆℘(Ω) be a
family of subsets of Ω . Then A is a σ -field if all of the following hold:

1. ∅ ∈A (the impossible event is in A );
2. ∀A ∈A ⇒ (Ω \A) ∈A (A is closed under complement);
3. ∀{An}n∈N ⊆A .

⋃
i∈NAi ∈A (A is closed under countable union).

The elements of A are called events.

Remark 14.1. It is immediate to see that A must include the certain event (i.e.,
Ω ∈ A , by 1 and 2) and that also the intersection of a countable sequence of
elements of A is in A , i.e.,

⋂
i∈NAi = Ω \ (⋃i∈N(Ω \Ai)) (it follows by 2, 3 and the

De Morgan property).
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Let us illustrate the notion of σ -field by showing a simple example over a finite
set of events.

Example 14.1. Let Ω = {a,b,c,d}. We define a σ -field on Ω by setting A ⊆℘(Ω):

A = {∅,{a,b},{c,d},{a,b,c,d}}

The smallest σ -field associated with a set Ω is {∅,Ω} and the smallest σ -
field that includes an event A is {∅,A,Ω \A,Ω}. More generally, given any subset
B ⊆℘(Ω) there is a least σ -field that contains B.

σ -fields fix the domain on which we define a particular class of functions called
measures, which assign a real number to each measurable set of the space. Roughly,
a measure can be seen as a notion of size that we wish to attach to sets.

Definition 14.2 (Measure). Let (Ω ,A ) be a σ -field. A function µ : A → [0,+∞]
is a measure on (Ω ,A ) if all of the following hold:

1. µ(∅) = 0;
2. for any countable collection {An}n∈N ⊆ A of pairwise disjoint sets we have

µ(
⋃

i∈NAi) = ∑i∈N µ(Ai).

A set contained in A is then called a measurable set, and the pair (Ω ,A ) is
called a measurable space. We are interested in a particular class of measures called
probabilities. A probability is a essentially a “normalised” measure.

Definition 14.3 (Probability). A measure P on (Ω ,A ) is a probability if P(Ω) = 1.

It is immediate from the definition of probability that the codomain of P cannot
be the whole set R of real numbers but it is just the interval of reals [0,1].

Definition 14.4 (Probability space). Let (Ω ,A ) be a measurable space and P be a
probability on (Ω ,A ). Then (Ω ,A ,P) is called a probability space.

14.2.1 Constructing a σ -Field

Obviously one can think that in order to construct a σ -field that contains some sets
equipped with a probability it is enough to construct the closure of these sets (together
with top and bottom elements) under complement and countable union. But it comes
out from set theory that not all sets are measurable. More precisely, it has been shown
that it is not possible to define (in ZFC set theory) a probability for all the subsets
of Ω when its cardinality is1 2ℵ0 (i.e., there is no function P : ℘(R)→ [0,1] that
satisfies Definition 14.4). So we have to be careful in defining a σ -field on a set Ω of
elementary events that is uncountable.

The next example shows how this problem can be solved in a special case.

1 The symbol ℵ0, called aleph zero, is the smallest infinite cardinal, i.e., it denotes the cardinality
of N. Thus 2ℵ0 is the cardinality of the powerset ℘(N) as well as of the continuum R.
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Example 14.2 (Coin tosses). Let us consider the classic coin toss experiment. We
have a fair coin and we want to model sequences of coin tosses. We would like to
define Ω as the set of infinite sequences of heads (H) and tails (T ):

Ω = {H,T}∞

Unfortunately this set has cardinality 2ℵ0 . As we have just said, a measure on
uncountable sets does not exist. So we can restrict our attention to a countable set: the
set C of finite sequences of coin tosses. In order to define a σ -field which can account
for almost all the events that we could express in words, we define the following set
for each α ∈ C called the shadow of α:

[α] = { ω ∈Ω | ∃ω ′ ∈Ω . αω
′ = ω }

The shadow of α is the set of infinite sequences of which α is a prefix. The right-hand
side of Figure 14.1 shows graphically the set [α] of infinite paths corresponding to
the finite sequence α .

…

…

…

…

H

H

HT

T

T ↵

[↵]

Fig. 14.1: The shadow of α

Now the σ -field which we were looking for is the one generated by the shadows
of the sequences in C . In this way we can start by defining a probability measure
P on the σ -field generated by the shadows of C , then we can assign a non-zero
probability to (all finite sequences and) some infinite sequences of coin tosses by
setting

p(ω) =


P( [ω] ) if ω is finite

P

 ⋂
α∈C , ω∈[α]

[α]

 if ω is infinite

For the second case, recall that the definition of σ -field ensures that the countable
intersection of measurable sets is measurable. Measure theory results show that this
measure exists and is unique.
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Very often we have structures that are associated with a topology (e.g. there exists
a standard topology, called the Scott topology, associated with each CPO) so it is
useful to define a standard method to obtain a σ -field from a topology.

Definition 14.5 (Topology). Let T be a set and T ⊆℘(T ) be a family of subsets of
T . Then T is said to be a topology on T if

• T,∅ ∈T ;
• A,B ∈T ⇒ A∩B ∈T , i.e., the topology is closed under finite intersection;
• let {Ai}i∈I be any family of sets in T . Then

⋃
i∈I Ai ∈ T , i.e., the topology is

closed under finite and infinite union.

The pair (T,T ) is said to be a topological space.

We call A an open set if it is in T and it is a closed set if T \A is open.

Remark 14.2. Note that in general a set can be open, closed, both or neither. For
example, T and ∅ are open and also closed sets. Open sets should not be confused
with measurable sets, because measurable sets are closed under complement and
countable intersection. This difference makes the notion of measurable function very
different from that of continuous function.

Definition 14.6 (Borel σ -field). Let T be a topology. We call the Borel σ -field of
T the smallest σ -field that contains T .

It turns out that the σ -field generated by the shadows which we have seen in the
previous example is the Borel σ -field generated by the topology associated with the
CPO of sets of infinite paths ordered by inclusion.

Example 14.3 (Euclidean topology). The euclidean topology is a topology on real
numbers whose open sets are open intervals of real numbers:

]a,b[ = {x ∈ R | a < x < b}

We can extend the topology to the corresponding Borel σ -field; then associating each
open interval with its length we obtain the usual Lebesgue measure.

It is often convenient to work with a generating collection, because Borel σ -fields
are difficult to describe directly.

14.3 Continuous Random Variables

Stochastic processes associate a(n exponentially distributed) random variable with
each event in order to represent its timing. So the concept of random variable and
distribution will be central to the development in this chapter.

Suppose that an experiment has been performed and its outcome ω ∈Ω is known.
A (continuous) random variable associates a real number with ω , e.g., by observing
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some of its features. For example, if ω is a finite sequence of coin tosses, a random
variable X can count how many heads appear in ω . Then we can try to associate this
with a probability measure on the possible values of X . However, it turns out that in
general we cannot define a function f :R→ [0,1] such that f (x) is the probability that
X is x, because the set {ω | X(ω) = x} is not necessarily an element of a measurable
space. We consider instead (measurable) sets of the form {ω | X(ω)≤ x}.

Definition 14.7 (Random variable). Let (Ω ,A ,P) be a probability space. A func-
tion X : Ω → R is said to be a random variable if

∀x ∈ R. {ω ∈Ω | X(ω)≤ x} ∈A

The condition expresses the fact that for each real number x, we can assign a
probability to the set {ω ∈ Ω | X(ω) ≤ x}, because it is included in a measurable
space. Notice that if we take as (Ω ,A ) the measurable space of the real numbers
with the Lebesgue measure, the identity id : R→ R satisfies the above condition. As
another example, we can take sequences of coin tosses, assign the digit 0 to heads
and 1 to tails and see the sequences as binary representations of decimals in [0,1).

Random variables can be classified by considering the set of their values. We call
discrete a random variable that has a countable or finite set of possible values. We
say that a random variable is continuous if the set of its values is continuous. In the
remainder of this section we will consider mainly continuous variables.

A random variable is completely characterised by its probability law, which
describes the probability that the variable will be found to have a value less than or
equal to the parameter.

Definition 14.8 (Cumulative distribution function). Let S = (Ω ,A ,P) be a prob-
ability space, and X : Ω → R be a continuous random variable over S. We call the
cumulative distribution function (also probability law) of X the image of P through
X and denote it by FX : R→ [0,1], i.e.,

FX (x)
def
= P({ω ∈Ω | X(ω)≤ x})

Note that the definition of random variable guarantees that, for any x ∈ R, the set
{ω ∈Ω | X(ω)≤ x} is assigned a probability. Moreover, if x < y then FX (x)≤ FX (y).

As a matter of notation, we write P(X ≤ a) to mean FX (a), from which we derive

P(X > a) def
= P({ω ∈Ω | X(ω)> a}) = 1−FX (a)

P(a < X ≤ b) def
= P({ω ∈Ω | a < X(ω)≤ b}) = FX (b)−FX (a)

The other important function that describes the relative probability of a continuous
random variable taking a specified value is the probability density.

Definition 14.9 (Probability density). Let X : Ω → R be a continuous random
variable on the probability space (Ω ,A ,P). We call the integrable function fX :
R→ [0,∞) the probability density of X if
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∀a,b ∈ R. P(a < X ≤ b) =
∫ b

a
fX (x)dx

So we can define the probability law FX of a variable X with density fX as follows:

FX (a) =
∫ a

−∞

fX (x)dx

Note that P(X = a) def
= P({ω | X(ω) = a}) is usually 0 when continuous random

variables are considered. In case X is a discrete random variable, then its distribution
function has jump discontinuities and the function fX : R→ [0,1] given by fX (x)

def
=

P(X = x) is called the probability mass function.
We are particularly interested in exponentially distributed random variables.

Definition 14.10 (Exponential distribution). A continuous random variable X is
said to be exponentially distributed with parameter λ if its probability law and density
function are defined as follows:

FX (x) =
{

1− e−λx if x> 0
0 x < 0

fX (x) =
{

λe−λx if x> 0
0 x < 0

Fig. 14.3: Exponential density distributions with different rates λ
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Fig. 14.2: Exponential probability laws with different rates λ
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The parameter λ is called the rate of X and it characterises the expected value
(mean) of X , which is 1/λ , and the variance of X , which is 1/λ 2. Some plottings of
the functions FX and fX associated with exponential distributions with different rates
are illustrated in Figures 14.2 and 14.3.

One of the most important features of exponentially distributed random variables
is that they are memoryless, meaning that the current value of the random variable
does not depend on the previous values.

Example 14.4 (Radioactive atom). Let us consider a radioactive atom, which due to
its instability can easily lose energy. It turns out that the probability that an atom
will decay is constant over the time. So this system can be modelled by using an
exponentially distributed, continuous random variable whose rate is the decay rate of
the atom. Since the random variable is memoryless we have that the probability that
the atom will decay at time t0 + t knowing that it has not decayed yet at time t0 is the
same for any choice of t0, as it depends only on t.

In the following we denote by P(A | B) the conditional probability of the event A
given the event B, with

P(A | B) def
=

P(A∩B)
P(B)

Theorem 14.1 (Memoryless). Let X be an exponentially distributed (continuous)
random variable with rate λ . Then

P(X ≤ t0 + t | X > t0) = P(X ≤ t)

Proof. Since X is exponentially distributed, its probability law is

FX (t) =
∫ t

0
λe−λxdx

so we need to prove

P(t0 < X ≤ t0 + t)
P(X > t0)

=

∫ t0+t
t0 λe−λxdx∫

∞

t0 λe−λxdx
?
=
∫ t

0
λe−λxdx = P(X ≤ t)

Since
∫ b

a λe−λxdx =
[
−e−λx

]b
a =

[
e−λx

]a
b it follows that

∫ t0+t
t0 λe−λxdx∫

∞

t0 λe−λxdx
=

[
e−λx

]t0
t0+t[

e−λx
]t0

∞

=
e−λ t0 − e−λ t · e−λ t0

e−λ t0
=

���e−λ t0(1− e−λ t)

���e−λ t0
= 1− e−λ t

We conclude by ∫ t

0
λe−λxdx =

[
e−λx

]0

t
= 1− e−λ t

ut
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Another interesting feature of exponentially distributed random variables is the
easy way in which we can compose information in order to find the probability
of more complex events. For example, if we have two random variables X1 and
X2 which represent the delay of two events e1 and e2, we can try to calculate the
probability that either of the two events will be executed before a specified time t.
As we will see it happens that we can define an exponentially distributed random
variable whose cumulative probability is the probability that either e1 or e2 executes
before a specified time t.

Theorem 14.2. Let X1 and X2 be two exponentially distributed continuous random
variables with rates respectively λ1 and λ2. Then

P(min{X1,X2} ≤ t) = 1− e−(λ1+λ2)t

Proof. We recall that for any two events (not necessarily disjoint) we have

P(A∪B) = P(A)+P(B)−P(A∩B)

and that for two independent events we have

P(A∩B) = P(A)×P(B)

Then

P(min{X1,X2} ≤ t) = P(X1 ≤ t ∨X2 ≤ t)

= P(X1 ≤ t)+P(X2 ≤ t)−P(X1 ≤ t ∧X2 ≤ t)

= P(X1 ≤ t)+P(X2 ≤ t)−P(X1 ≤ t)×P(X2 ≤ t)

= (1− e−λ1t)+(1− e−λ2t)− (1− e−λ1t)(1− e−λ2t)

= 1− e−λ1te−λ2t

= 1− e−(λ1+λ2)t

ut

Thus X =min{X1,X2} is also an exponentially distributed random variable, whose
rate is λ1 + λ2. We will exploit this property to define, e.g., the sojourn time in
continuous time Markov chains (see Section 14.4.4).

A second important value that we can calculate is the probability that one event
will be executed before another. This corresponds in our view to calculating the
probability that X1 will take a value smaller than the one taken by X2, namely that
the action associated with X1 is chosen instead of the one associated with X2.

Theorem 14.3. Let X1 and X2 be two exponentially distributed, continuous random
variables with rates respectively λ1 and λ2. Then

P(X1 < X2) =
λ1

λ1 +λ2
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Proof. Imagine you are at some time t and neither of the two variables has fired. The
probability that X1 fires in the infinitesimal interval dt while X2 fires in some later
instant is

λ1e−λ1t
(∫

∞

t
λ2e−λ2t2dt2

)
dt

from which we derive

P(X1 < X2) =
∫

∞

0
λ1e−λ1t1

(∫
∞

t1
λ2e−λ2t2dt2

)
dt1

=
∫

∞

0
λ1e−λ1t1

[
e−λ2t2

]t1

∞

dt1

=
∫

∞

0
λ1e−λ1t1 · e−λ2t1dt1

=
∫

∞

0
λ1e−(λ1+λ2)t1dt1

=

[
λ1

λ1 +λ2
e−(λ1+λ2)t

]0

∞

=
λ1

λ1 +λ2

ut

We will exploit this property when presenting the process algebra PEPA, in
Chapter 16.

As a special case, when the rates of the two variables are equal, i.e., λ1 = λ2, then
P(X1 < X2) = 1/2.

14.3.1 Stochastic Processes

Stochastic processes are a very powerful mathematical tool that allows us to describe
and analyse a wide variety of systems.

Definition 14.11 (Stochastic process). Let (Ω ,A ,P) be a probability space and T
be a set. Then a family {Xt}t∈T of random variables over Ω is said to be a stochastic
process.

A stochastic process can be identified with a function X : Ω ×T → R such that

∀t ∈ T. X(·, t) : Ω → R is a random variable

Usually the values in R that each random variable can take are called states and
the elements of T are interpreted as times.

Obviously the set T strongly characterises the process. A process in which T is
N or a subset of N is said to be a discrete time process; on the other hand if T = R
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(or T = [0,∞)) then the process is a continuous time process. The same distinction
is usually made on the value that each random variable can assume: if this set has a
countable or finite cardinality then the process is discrete; otherwise it is continuous.
We will focus only on discrete processes, with both discrete and continuous time.
When the set S = {x | ∃ω ∈Ω , t ∈ T.X(ω, t) = x} of states is finite, with cardinality
N, without loss of generality, we can assume that S = {1,2, ...,N} is just the set of
the first N positive natural numbers and we read Xt = i as “the stochastic process X
is in the ith state at time t”.

14.4 Markov Chains

Stochastic processes studied by classical probability theory often involve only inde-
pendent variables, namely the outcomes of the processes are totally independent of
the past. Markov chains extend the classic theory by dealing with processes where
the value of each variable is influenced by the previous value. This means that in
Markov processes the next outcome of the system is influenced only by the previous
state. One might want to extend this theory in order to allow general dependencies
between variables, but it turns out that it is very difficult to prove general results on
processes with dependent variables. We are interested in Markov chains since they
provide an expressive mathematical framework to represent and analyse important
interleaving and sequential systems.

Definition 14.12 (Markov chain). Let (Ω ,A ,P) be a probability space, T be a
totally ordered set and {Xt}t∈T be a stochastic process. Then {Xt}t∈T is said to be a
Markov chain if for each sequence t0 < ... < tn < tn+1 of times in T and for all states
x,x0,x1, ...,xn ∈ R

P(Xtn+1 = x | Xtn = xn, . . . ,Xt0 = x0) = P(Xtn+1 = x | Xtn = xn)

The previous proposition is usually referred to as the Markov property.

An important characteristic of a Markov chain is the way in which it is influenced
by the time. We have two types of Markov chains: inhomogeneous and homogeneous.
In the first case the state of the system depends on the time, namely the probability
distribution changes over time. In homogeneous chains on the other hand the time
does not influence the distribution, i.e., the transition probability does not change
over time. We will consider only the simpler case of homogeneous Markov chains,
gaining the possibility to shift the time axis backward and forward.

Definition 14.13 (Homogeneous Markov chain). Let {Xt}t∈T be a Markov chain;
it is homogeneous if for all states x,x′ ∈ R and for all times t, t ′ ∈ T with t < t ′ we
have

P(Xt ′ = x′|Xt = x) = P(Xt ′−t = x′|X0 = x)

In what follows we use the term “Markov chain” as a synonym for “homogeneous
Markov chain”.



320 14 Measure Theory and Markov Chains

14.4.1 Discrete and Continuous Time Markov Chains

As we said, one of the most important things about stochastic processes in general,
and about Markov chains in particular, is the choice of the set of times. In this section
we will introduce two kinds of Markov chains, those in which T = N, called discrete
time Markov chains (DTMCs), and those in which T = R, referred to as continuous
time Markov chains (CTMCs).

Definition 14.14 (Discrete time Markov chain (DTMC)). Let {Xt}t∈N be a stochas-
tic process; then, it is a discrete time Markov chain (DTMC) if for all n ∈ N and for
all states x,x0,x1, ...,xn ∈ R

P(Xn+1 = x | Xn = xn, . . . ,X0 = x0) = P(Xn+1 = x | Xn = xn)

Since we are restricting our attention to homogeneous chains, we can reformulate
the Markov property as follows

P(Xn+1 = x | Xn = xn, . . . ,X0 = x0) = P(X1 = x | X0 = xn)

Assuming the possible states are 1, ...,N, the DTMC is entirely determined by the
transition probabilities ai, j = P(X1 = j | X0 = i) for i, j ∈ {1, ...,N}.

Definition 14.15 (Continuous time Markov chain (CTMC)). Let {Xt}t∈R be a
stochastic process; then it is a continuous time Markov chain (CTMC) if for all states
x,x0, ...,xn, for any ∆t ∈ [0,∞) and any sequence of times t0 < ... < tn we have

P(Xtn+∆t = x | Xtn = xn, . . . ,Xt0 = x0) = P(Xtn+∆t = x | Xtn = xn)

As for the discrete case, the homogeneity allows us to reformulate the Markov
property as follows:

P(Xtn+∆t = x | Xtn = xn, . . . ,Xt0 = x0) = P(X∆t = x | X0 = xn)

Assuming the possible states are 1, ...,N, the CTMC is entirely determined by the
rates λi, j that govern the probability P(Xt = j | X0 = i) = 1− e−λi, jt .

We remark that the exponential random variable is the only continuous random
variable with the memoryless property, i.e., CTMCs are necessarily exponentially
distributed.

14.4.2 DTMCs as LTSs

A DTMC can be viewed as a particular LTS whose labels are probabilities. Usually
such LTSs are called probabilistic transition systems (PTSs).

A difference between LTSs and PTSs is that in LTSs we can have structures like
the one shown in Figure 14.4(a), with two transitions that are co-initial and co-final
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and carry different labels. In PTSs we cannot have this kind of situation since two
different transitions between the same pair of states have the same meaning as a single
transition labelled with the sum of the probabilities, as shown in Figure 14.4(b).

p
**

q
44

(a)

p+q //

(b)

Fig. 14.4: Two equivalent DTMCs

The PTS (S,αD) associated with a DTMC has a set of states S and a transition
function αD : S→ (D(S)∪ 1) where D(S) denotes the set of discrete probability
distributions over S and 1 = {∗} is a singleton used to represent deadlock states. We
recall that a discrete probability distribution over a set S is a function D : S→ [0,1]
such that ∑s∈S D(s) = 1.

Definition 14.16 (PTS of a DTMC). Let {Xt}t∈N be a DTMC whose set of states
is S. Its corresponding PTS has set of states S and transition function αD : S→
(D(S)∪1) defined as follows:

αD(s) =
{

λ s′. P(X1 = s′ | X0 = s) if s is not a deadlock state
∗ otherwise

Note that for each non-deadlock state s it holds

∑
s′∈S

αD(s)(s′) = 1

Usually the transition function is represented by a matrix P whose indices i, j
represent states si,s j and each element ai, j is the probability that given that the
system is in the state i it will be in the state j in the next time instant, namely
∀i, j ≤ |S|. ai, j = αD(si)(s j); note that in this case each row of P must sum to one.
This representation allows us to study the system by relying on linear algebra. In fact
we can represent the present state of the system by using a row vector π(t) = [π

(t)
i ]i∈S

where π
(t)
i represents the probability that the system is in state si at time t. If we

want to calculate how the system will evolve (i.e., the next-state distribution) starting
from this state we can simply multiply the vector by the matrix which represents the
transition function, as the following example of a three-state system shows:

π
(t+1) = π

(t)P =
∣∣∣π(t)

1 π
(t)
2 π

(t)
3

∣∣∣
∣∣∣∣∣∣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

∣∣∣∣∣∣=
∣∣∣∣∣∣∣
a1,1π

(t)
1 +a2,1π

(t)
2 +a3,1π

(t)
3

a1,2π
(t)
1 +a2,2π

(t)
2 +a3,2π

(t)
3

a1,3π
(t)
1 +a2,3π

(t)
2 +a3,3π

(t)
3

∣∣∣∣∣∣∣
T
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where the resulting row vector is transposed for space reasons.
For some special classes of DTMCs we can prove the existence of a limit vector

for t→ ∞, that is to say the probability that the system is found in a particular state
is stationary in the long run (see Section 14.4.3).

1
1/5 //

4/5

��
2

2/3
��

1/3

��

3

1

^^

Fig. 14.5: A DTMC

Example 14.5 (DTMC). Let us consider the DTMC in Figure 14.5. We represent the
chain algebraically by using the following matrix:

P =

∣∣∣∣∣∣
4/5 1/5 0
0 1/3 2/3
1 0 0

∣∣∣∣∣∣
Now suppose that we do not know the state of the system at time t, thus we assume

the system has equal probability 1
3 of being in any of the three states. We represent

this situation with the following vector:

π
(t) =

∣∣1/3 1/3 1/3
∣∣

Now we can calculate the state distribution at time t +1 as follows:

π
(t+1) =

∣∣1/3 1/3 1/3
∣∣ ∣∣∣∣∣∣

4/5 1/5 0
0 1/3 2/3
1 0 0

∣∣∣∣∣∣= ∣∣3/5 8/45 2/9
∣∣

Notice that the sum of probabilities in the result 3/5+8/45+2/9 is again 1. Obvi-
ously we can iterate this process in order to simulate the evolution of the system.

Since we have represented a Markov chain by using a transition system it is quite
natural to ask for the probability of a finite path.

Definition 14.17 (Finite path probability). Let {Xt}t∈N be a DTMC and s1 · · ·sn
a finite path of its PTS (i.e., ∀i. 1 ≤ i < n ⇒ αD(si)(si+1) > 0). We define the
probability P(s1 · · ·sn) of the path s1 · · ·sn as follows:

P(s1 · · ·sn) =
n−1

∏
i=1

αD(si)(si+1) =
n−1

∏
i=1

asi,si+1
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Example 14.6 (Finite paths). Let us consider the DTMC of Example 14.5 and take
the path 1 2 3 1. We have

P(1 2 3 1) = a1,2×a2,3×a3,1 =
1
5
× 2

3
×1 =

2
15

Note that if we consider the sequence of states 1 1 3 1

P(1 1 3 1) = a1,1×a1,3×a3,1 =
4
5
×0×1 = 0

In fact there is no transition allowed from state 1 to state 3.

Note that it would make no sense to define the probability of infinite paths as
the product of the probabilities of all choices, because any infinite sequence would
have a null probability. We can overcome this problem by using the Borel σ -field
generated by the shadows, as seen in Example 14.2.

14.4.3 DTMC Steady State Distribution

In this section we will present a special class of DTMCs which guarantees that the
probability that the system is found in a state can be estimated on the long term.
This means that the probability distribution of each state of the DTMC (i.e., the
corresponding value in the vector π(t)) reaches a steady state distribution which does
not change in the future, namely if πi is the steady state distribution for the state i, if
π
(0)
i = πi then π

(t)
i = πi for each t > 0.

Definition 14.18 (Steady state distribution). We define the steady state distribution
(or stationary distribution) π =

∣∣π1 . . .πn
∣∣ of a DTMC as the limit distribution

∀i ∈ [1,n]. πi = lim
t→∞

π
(t)
i

when such a limit exists.

In order to guarantee that the limit exists we will restrict our attention to a subclass
of Markov chains.

Definition 14.19 (Ergodic Markov chain). Let {Xt}t∈N be a Markov chain. Then it
is said to be ergodic if it is both

irreducible: each state is reachable from every other; and
aperiodic: the gcd2 of the lengths of all paths from any state to itself must be 1.

Theorem 14.4. Let {Xt}t∈N be an ergodic Markov chain. Then the steady state
probability π always exists and it is independent of the initial state probability
distribution.
2 The gcd is the greatest common divisor.
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The steady state probability distribution π can be computed by solving the system
of linear equations

π = π P

where P is the matrix associated with the chain, under the additional constraint that
the sum of all probabilities in π is 1.

Example 14.7 (Steady state distribution). Let us consider the DTMC of Example 14.5.
It is immediate to check that it is ergodic. To find the steady state distribution we
need to solve the following linear system:

∣∣π1 π2 π3
∣∣ ∣∣∣∣∣∣

4/5 1/5 0
0 1/3 2/3
1 0 0

∣∣∣∣∣∣= ∣∣π1 π2 π3
∣∣

The corresponding system of linear equations is
4
5 π1 +π3 = π1

1
5 π1 +

1
3 π2 = π2

2
3 π2 = π3

Note that the equations express the fact that the probability of being in the state i
is given by the sum of the probabilities of being in any other state j weighted by
the probability of moving from j to i. By solving the system of linear equations we
obtain the solution ∣∣10π2/3 π2 2π2/3

∣∣
i.e., π1 =

10
3 π2 and π3 =

2
3 π2.

Now by imposing π1 +π2 +π3 = 1 we have π2 = 1/5, thus

π =
∣∣2/3 1/5 2/15

∣∣
So, independently of the initial state, in the long run it is more likely to find the
system in the state 1 than in states 2 or 3, because the steady state probability of
being in state 1 is much larger than the other two probabilities.

14.4.4 CTMCs as LTSs

Continuous time Markov chains can also be represented as LTSs, but in this case
the labels are rates and not probabilities. We have two equivalent definitions for the
transition function:

αC : S→ S→ R or αC : (S×S)→ R
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where S is the set of states of the chain and any real value λ = αC(s)(s′) (or λ =

αC(s1,s2)) represents the rate which labels the transition s λ−→ s′. Also in this case, as
for DTMCs, we have that two different transitions between the same two states are
merged into a single transition whose label is the sum of the rates. We write λi, j for
the rate αC(si,s j) associated with the transition from state si to state s j. A difference
here is that self loops can be ignored: this is due to the fact that in continuous
time we allow the system to sojourn in a state for a period and staying in a state is
indistinguishable from moving to the same state via a loop.

The probability that some transition happens from state si in some time t can be
computed by taking the minimum of the continuous random variables associated
with the possible transitions: by Theorem 14.2 we know that this probability is also
exponentially distributed and has a rate that is given by the sum of rates of all the
transitions outgoing from si.

Definition 14.20 (Sojourn time). Let {Xt} be a CTMC. The probability that no
transition happens from a state si in some (sojourn) time t is 1 minus the probability
that some transition happens:

∀t ∈ (0,∞). P(Xt = si | X0 = si) = e−λ t with λ = ∑
j 6=i

λi, j

As for DTMCs we can represent a CTMC by using linear algebra. In this case the
matrix Q which represents the system is defined by setting qi, j = αC(si,s j) = λi, j
when i 6= j and qi,i = −∑ j 6=i qi, j. This matrix is usually called an infinitesimal
generator. This definition is convenient for steady state analysis, as explained at the
end of the next section.

14.4.5 Embedded DTMC of a CTMC

Often the study of a CTMC is very hard, particularly in terms of computational com-
plexity. So it is useful to have a standard way to discretise the CTMC by synthesising
a DTMC, called the embedded DTMC, in order to simplify the analysis.

Definition 14.21 (Embedded DTMC). Let αC be the transition function of a CTMC.
Its embedded DTMC has the same set of states S and transition function αD defined
by taking

αD(si)(s j) =

{
αC(si,s j)

∑s6=si αC(si,s)
if si 6= s j

0 otherwise

As we can see, the previous definition simply normalises the rates to 1 in order to
produce a probability distribution.

While the embedded DTMC completely determines the probabilistic behaviour of
the system, it does not fully capture the behaviour of the continuous time process
because it does not specify the rates at which transitions occur.
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Regarding the steady state analysis, since in the infinitesimal generator matrix Q
describing the CTMC we have qi,i =−∑ j 6=i qi, j for any state index i, the steady state
distribution can equivalently be computed by solving the system of (homogeneous,
normalised) linear equations π Q = 0 (see Problem 14.11).

14.4.6 CTMC Bisimilarity

Obviously, since Markov chains can be seen as a particular type of LTS, one might
think of modifying the notion of bisimilarity in order to study the equivalence between
stochastic systems.

Let us start by revisiting the notion of LTS bisimilarity in a slightly different way
from that seen in Chapter 11.

Definition 14.22 (Reachability predicate). Given an LTS (S,L,→), we define a
function γ : S×L×℘(S)→ {true, false} which takes a state p, an action ` and a
set of states I and returns true if there exists a state q ∈ I reachable from p with a
transition labelled by `, and false otherwise. Formally, given an equivalence class of
states I we define

γ(p, `, I) def
= ∃q ∈ I. p `−→ q

Suppose we are given a (strong) bisimulation relation R. We know that its induced
equivalence relation ≡R is also a bisimulation. Let I be an equivalence class induced
by R. By the definition of bisimulation we have that given any two states s1,s2 ∈ I
if s1

`−→ s′1 for some ` and s′1 then it must be the case that there exists s′2 such that

s2
`−→ s′2 and s′2 is in the same equivalence class I′ as s′1 (and vice versa).
Now consider the function Φ :℘(S×S)→℘(S×S) defined by letting

∀p,q ∈ S. p Φ(R) q def
=
(
∀` ∈ L. ∀I ∈ S/≡R . γ(p, `, I)⇔ γ(q, `, I)

)
where I ranges over the equivalence classes induced by the relation R.

Definition 14.23 (Bisimulation revisited). By the argument above, a (strong) bisim-
ulation is just a relation such that R ⊆ Φ(R) and the largest bisimulation is the
bisimilarity relation defined as

' def
=

⋃
R⊆Φ(R)

R

The construction Φ can be extended to the case of CTMCs. The idea is that
equivalent states will fall into the same equivalence class and if a state has multi-
ple transitions with rates λ1, ...,λn to different states s1, ...,sn that are in the same
equivalence class, then we can represent all such transitions by a single transition
that carries the rate ∑

n
i=1 λi. To this aim, given a CTMC αC : (S×S)→ R, we define
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c1
0.8 // d1
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2

99
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0.4 // b3

2 // c2
0.8 // d2

Fig. 14.6: CTMC bisimilarity

a function γC : S×℘(S)→ R simply by extending the transition function to sets of
states as follows:

γC(s, I) = ∑
s′∈I

αC(s,s′)

As we have done above for LTSs, we define the function ΦC :℘(S×S)→℘(S×S)
by

∀s1,s2 ∈ S. s1 ΦC(R) s2
def
= ∀I ∈ S/≡R . γC(s1, I) = γC(s2, I)

meaning that the total rate of reaching any equivalence class of R from s1 is the same
as that from s2.

Definition 14.24 (CTMC bisimilarity 'C). A CTMC bisimulation is a relation R
such that R⊆ΦC(R) and the CTMC bisimilarity 'C is the relation

'C
def
=

⋃
R⊆ΦC(R)

R

Let us show how this construction works with an example. Abusing the notation,
in the following we write αC(s, I) instead of γC(s, I).

Example 14.8. Let us consider the two CTMCs in Figure 14.6. We argue that the
following equivalence relation R identifies bisimilar states:

R = { {a1,a2},{b1,b2,b3},{c1,c2},{d1,d2} }

Let us show that R is a CTMC bisimulation: whenever two states are related, we
must check that the sum of the rates from them to the states on any equivalence class
coincide. For a1 and a2, we have

αC(a1,{a1,a2}) = αC(a2,{a1,a2}) = 0
αC(a1,{b1,b2,b3}) = αC(a2,{b1,b2,b3}) = 0.4

αC(a1,{c1,c2}) = αC(a2,{c1,c2}) = 0
αC(a1,{d1,d2}) = αC(a2,{d1,d2}) = 0

For b1,b2,b3 we have
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αC(b1,{c1,c2}) = αC(b2,{c1,c2}) = αC(b3,{c1,c2}) = 2

Note that we no longer mention all remaining trivial cases concerned with the
other equivalence classes, where αC returns 0, because there are no transitions to
consider. Finally, we have one last non-trivial case to check:

αC(c1,{d1,d2}) = αC(c2,{d1,d2}) = 0.8

14.4.7 DTMC Bisimilarity

One might think that the same argument about bisimilarity that we have exploited
for CTMCs could also be extended to DTMCs. It is easy to show that if a DTMC
has no deadlock states, in particular if it is ergodic, then bisimilarity becomes trivial
(see Problem 14.1). This does not mean that the concept of bisimulation on ergodic
DTMCs is useless; in fact these relations (finer than bisimilarity) can be used to
factorise the chain (lumping) in order to study particular properties.

If we consider DTMCs with deadlock states, then bisimilarity can be non-trivial.
Take a DTMC αD : S→ (D(S)∪ 1). Let us define the function γD : S→℘(S)→
(R∪1) as follows:

γD(s)(I) =
{
∗ if αD(s) = ∗
∑s′∈I αD(s)(s′) otherwise

Correspondingly, we set ΦD :℘(S×S)→℘(S×S) to be defined as

∀s1,s2 ∈ S. s1 ΦD(R) s2
def
= ∀I ∈ S/≡R . γD(s1)(I) = γD(s2)(I)

Definition 14.25 (DTMC bisimilarity 'D). A DTMC bisimulation is a relation R
such that R⊆ΦD(R), and the DTMC bisimilarity 'D is the relation

'D
def
=

⋃
R⊆ΦD(R)

R

In this case

1. Any two deadlock states s1,s2 are bisimilar, because

∀I ∈℘(S). γD(s1)(I) = γD(s2)(I) = ∗

2. Any deadlock state s1 is separated from any non-deadlock state s, as

∀I. γD(s1)(I) = ∗ 6= γD(s)(I) ∈ R

3. If there are no deadlock states, then 'D = S×S.
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Problems

14.1. Prove that the bisimilarity relation in a DTMC αD : S→ (D(S)∪1) without
deadlock states (and in particular, when it is ergodic) is always the universal relation
S×S.

14.2. A mouse runs through the maze shown below.

    

11.5. MEAN FIRST PASSAGE TIME 467

2 43

65

1

Figure 11.7: Maze for Exercise 7.

6 For the Land of Oz example (Example 11.1), make rain into an absorbing

state and find the fundamental matrix N. Interpret the results obtained from

this chain in terms of the original chain.

7 A rat runs through the maze shown in Figure 11.7. At each step it leaves the

room it is in by choosing at random one of the doors out of the room.

(a) Give the transition matrix P for this Markov chain.

(b) Show that it is an ergodic chain but not a regular chain.

(c) Find the fixed vector.

(d) Find the expected number of steps before reaching Room 5 for the first

time, starting in Room 1.

8 Modify the program ErgodicChain so that you can compute the basic quan-

tities for the queueing example of Exercise 11.3.20. Interpret the mean recur-

rence time for state 0.

9 Consider a random walk on a circle of circumference n. The walker takes

one unit step clockwise with probability p and one unit counterclockwise with

probability q = 1 − p. Modify the program ErgodicChain to allow you to

input n and p and compute the basic quantities for this chain.

(a) For which values of n is this chain regular? ergodic?

(b) What is the limiting vector w?

(c) Find the mean first passage matrix for n = 5 and p = .5. Verify that

mij = d(n− d), where d is the clockwise distance from i to j.

10 Two players match pennies and have between them a total of 5 pennies. If at

any time one player has all of the pennies, to keep the game going, he gives

one back to the other player and the game will continue. Show that this game

can be formulated as an ergodic chain. Study this chain using the program

ErgodicChain.

At each step it stays in the room or it leaves the room by choosing at random one
of the doors (all choices have equal probability).

1. Draw the transition graph and give the matrix P for this DTMC.
2. Show that it is ergodic and compute the steady state distribution.
3. Assuming the mouse is initially in room 1, what is the probability that it is in

room 6 after three steps?

14.3. Show that the DTMC described by the matrix∣∣∣∣∣∣
1
4 0 3

4
0 1 0
0 0 1

∣∣∣∣∣∣
has more than one stationary distribution, actually an infinite number of them. Explain
why this is so.

14.4. With the Markov chain below we intend to represent the scenario where Mario,
a taxi driver, is looking for customers. In state s1, Mario is parked waiting for
customers, who arrive with probability b. Then Mario moves to the busy state s3,
with probabilities c of staying there and 1− c of moving back to s1. Alternatively,
Mario may decide, with probability s, to move around (state s2), driving in the busiest
streets of town looking for clients, who show up with probability g.

s1

1−s−b
��

s

  
b

~~
s3

c

KK

1−c
22

s2

1−g

SSg
oo
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1. Check that the Markov chain above is ergodic.
2. Compute the steady state probabilities π1, π2 and π3 for the three states s1, s2 and

s3 as functions of the parameters b, c, g and s.
3. Evaluate the probabilities for suitable values of the parameters, e.g.,

b = 0.5, c = 0.5, g = 0.8, s = 0.3

4. Prove that, when it is very likely to find customers on the streets (i.e., when g = 1),
in order to maximise π3, Mario must always move around (i.e., he must choose
s = 1−b).

14.5. A state si of a Markov chain is called absorbing if αD(si)(si) = 1, and a Markov
chain is absorbing if it has at least one absorbing state. Can an absorbing Markov
chain be ergodic? Explain.

14.6. A machine can be described as being in three different states: (R) under repair,
(W) waiting for a new job, (O) operating.

• While the machine is operating the probability of breaking down is 1
20 = 0.05 and

the probability of finishing the task (and going to waiting) is 1
10 = 0.1.

• If the machine is under repair there is a 1
10 = 0.1 probability of getting repaired,

and then the machine will become waiting.
• A broken machine is never brought directly (in one step) to operation.
• If the machine is waiting, there is a 9

10 = 0.9 probability of getting into operation.
• A waiting machine does not break.

1. Describe the system as a DTMC, draw the corresponding transition system and
define the transition probability matrix. Is it ergodic?

2. Assume that the machine is waiting at time t. What is the probability that it is
operating at time t +1? Explain.

3. What is the probability that the machine is operating after a long time? Explain.

14.7. A certain calculating machine uses only the digits 0 and 1. It is supposed to
transmit one of these digits through several stages. However, at every stage, there is
a probability p that the digit that enters this stage will be changed when it leaves and
a probability q = 1− p that it won’t.

1. Form a Markov chain to represent the process of transmission. What are the states?
What is the matrix of transition probabilities?

2. Assume that the digit 0 enters the machine: what is the probability that the
machine, after two stages, produces the digit 0? For which value of p is this
probability minimal?

14.8. Consider a CTMC with state space S = {0,1}. The only possible transitions
are described by the rates q0,1 = λ and q1,0 = µ . Compute the following:

1. the embedded DTMC;
2. the state probabilities π(t) in terms of the initial distribution π(0).
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14.9. Consider a CTMC with N +1 states representing the number of possible active
instances of a service, from 0 to a maximum N. Let i denote the number of currently
active instances. A new instance can be spawned with rate

λi
def
= (N− i)×λ

for some fixed λ , i.e., the rate decreases as the number of instances already running
increases,3 while an instance is terminated with rate

µi
def
= i×µ

for some fixed µ , i.e., the rate increases as there are more active instances to be
terminated.

1. Model the system as a CTMC.
2. Compute the infinitesimal generator matrix.
3. Find the steady state probability distribution.
4. Consider a second system composed of N independent components, each with

two states and transitions with rates λ and µ to change state. Are the two systems
CTMC bisimilar?

14.10. Let us consider the CTMC

s0
λ1

44

λ1

��

s1

λ2
tt

s2

λ1
**

λ1

UU

s3
λ2

jj

1. What is the probability to sojourn in s0 for some time t?
2. Assume λ2 > 2λ1: are there any bisimilar states?

14.11. Prove that computing the steady state distribution of a CTMC by solving the
system of (homogeneous, normalised) linear equations π Q = 0 gives the same result
as computing the steady state distribution of the embedded DTMC.

3 Imagine the number of clients is fixed. When i instances of the service are already active to serve i
clients, then the number of clients that can require a new instance of the service is decreased by i.



Chapter 15
Discrete Time Markov Chains with Actions and
Nondeterminism

A reasonable probability is the only certainty. (E.W. Howe)

Abstract In this chapter we introduce some advanced probabilistic models that can
be defined by enriching the transition functions of PTSs. As we have seen for Markov
chains, the transition system representation is very useful since it comes with a notion
of bisimilarity. In fact, using the advanced, categorical notion of coalgebra, which
however we will not develop further, there is a standard method to define bisimilarity
just according to the type of the transition function. Also a corresponding notion of
Hennessy-Milner logic can be defined accordingly. First we will see two different
ways to add observable actions to our probabilistic models, then we will present
extensions which combine nondeterminism, actions and probabilities.

15.1 Reactive and Generative Models

In this section we show how it is possible to change the transition function of PTSs
in order to extend Markov chains with labels that represent actions performed by the
system. There are two main cases to consider, called reactive models and generative
models, respectively:

Reactive: In the first case we add actions that are used by the controller to
stimulate the system. When we want the system to change its state we
give an input action to it which can affect its future state (its reaction).
This is the reason why this type of model is called “reactive”. Formally,
we have that a reactive probabilistic transition system (also called a
Markov decision process) is determined by a transition function of the
form1

αr : S→ L→ (D(S)∪1)

1 The subscript r stands for “reactive”.
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Fig. 15.1: A reactive PTS representing a coffee maker

where we recall that S is the set of states, 1 = {∗} is a singleton
used to represent the deadlock states, and D(S) is the set of discrete
probability distributions over S.

Generative: In the second case the actions represent the outcomes of the system;
this means that whenever the system changes its state it shows an
action, whence the terminology “generative”. Formally we have that a
generative probabilistic transition system is determined by a transition
function of the form2

αg : S→ (D(L×S)∪1)

Remark 15.1. We have that in a reactive system, for any s ∈ S and for any ` ∈ L

∑
s′∈S

αr(s)(`)(s′) = 1.

Instead, in a generative system, for any s ∈ S

∑
(`,s′)∈L×S

αg(s)(`,s′) = 1

This means that in reactive systems, given a non-deadlock source state and an action,
the next state probabilities must sum to 1, while in a generative system, given a
non-deadlock source state, the distribution of all transitions must sum to 1 (i.e., given
an action ` the sum of probabilities to reach any state is less than or equal to 1).

15.2 Reactive DTMC

Let us illustrate how a reactive probabilistic system works by using a simple example.

2 The subscript g stands for “generative”.
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Example 15.1 (Random coffee maker). Let us consider a system which we call ran-
dom coffee maker, in which the user can insert a coin (1 or 2 euros); then the
coffee maker, based on the value of the input, makes a coffee or a cappuccino with
larger or smaller probabilities. The system is represented in Figure 15.1(a). Note
that since we want to allow the system to take input from the environment we
have chosen a reactive system to represent the coffee maker. The set of labels is
L = {1¤,2¤,coffee,cappuccino} and the corresponding transitions are represented
as dashed arrows. There are three states, s1, s2 and s3, represented by black-filled
circles. If the input 1¤ is received in state s1, then we can reach state s2 with prob-
ability 2/3 or s3 with probability 1/3, as illustrated by the solid arrows departing
from the white-filled circle associated with the distribution. Vice versa, if the input
2¤ is received in state s1, then we can reach state s2 with probability 1/3 or s3
with probability 2/3. From state s2 there is only one transition available, with label
coffee, that leads to s1 with probability 1. Figure 15.1(b) shows a more compact
representation of the random coffee maker, where the white-filled circle reachable
from s2 is omitted because the probability distribution is trivial. Similarly, from state
s3 there is only one transition available, with label cappuccino, which leads to s1
with probability 1.

As we have shown in the previous chapter, using LTSs we have a standard method
to define bisimilarity between probabilistic systems. Take a reactive probabilistic
system αr : S→ L→ (D(S)∪1). Let us define the function γr : S→ L→℘(S)→ R
as follows:

γr(s)(`)(I) =
{

0 if αr(s)(`) = ∗
∑s′∈I αr(s)(`)(s′) otherwise

Correspondingly, we set Φr :℘(S×S)→℘(S×S) to be defined as

∀s1,s2 ∈ S. s1 Φr(R) s2
def
= ∀` ∈ L. ∀I ∈ S/≡R . γr(s1)(`)(I) = γr(s2)(`)(I)

Definition 15.1 (Reactive bisimilarity 'r). A reactive bisimulation is a relation R
such that R⊆Φr(R) and the reactive bisimilarity 'r is the relation

'r
def
=

⋃
R⊆Φr(R)

R

Note that any two bisimilar states s1 and s2 must have, for each action, the same
probability to reach the states in any other equivalence class.
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15.2.1 Larsen-Skou Logic

Now we will present a probabilistic version of Hennessy-Milner logic. This logic
has been introduced by Larsen and Skou, and provides a new version of the modal
operator. As usual we start from the syntax of Larsen-Skou logic formulas.

Definition 15.2 (Larsen-Skou logic). The formulas of Larsen-Skou logic are gener-
ated by the following grammar:

ϕ ::= true | ϕ1∧ϕ2 | ¬ϕ | 〈`〉q ϕ.

We let S denote the set of Larsen-Skou logic formulas. The novelty resides in
the new modal operator 〈`〉q ϕ that takes three parameters: a formula ϕ , an action `
and a real number q≤ 1. It corresponds to a refined variant of the usual HM-logic
diamond operator 3`. Informally, the formula 〈`〉q ϕ requires the ability to reach a
state satisfying the formula ϕ by performing the action ` with probability at least q.

As we have done for Hennessy-Milner logic we present the Larsen-Skou logic by
defining a satisfaction relation |=⊆ S×S .

Definition 15.3 (Satisfaction relation). Let αr : S→ L→ (D(S)∪1) be a reactive
probabilistic system. We say that the state s ∈ S satisfies the Larsen-Skou formula ϕ

and write s |= ϕ , if satisfaction can be proved using the (inductively defined) rules

s |= true
s |= ϕ1∧ϕ2 if s |= ϕ1 and s |= ϕ2
s |= ¬ϕ if ¬s |= ϕ

s |= 〈`〉q ϕ if γr(s)(`)JϕK≥ q whereJϕK = {s′ ∈ S | s′ |= ϕ}

A state s satisfies the formula 〈`〉q ϕ if the (sum of the) probability to pass into
any state s′ that satisfies ϕ from s with an action labelled ` is greater than or equal to
q. Note that the corresponding modal operator of the HM-logic can be obtained by
setting q = 1, i.e., 〈`〉1 ϕ means 3`ϕ and we write just 〈`〉ϕ when this is the case.

As for HM-logic, the equivalence induced by Larsen-Skou logic formulas coin-
cides with bisimilarity. Moreover, we have an additional, stronger result: it can be
shown that it is enough to consider only the version of the logic without negation.

Theorem 15.1 (Larsen-Skou bisimilarity characterisation). Two states of a reac-
tive probabilistic system are bisimilar if and only if they satisfy the same formulas of
Larsen-Skou logic without negation.

Example 15.2 (Larsen-Skou logic). Let us consider the reactive system in Figure 15.1.
We would like to prove that

s1 |= 〈1¤〉1/2 〈coffee〉 true

By definition of the satisfaction relation, we must check that
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γr(s1)(1¤)(I1)≥ 1/2 where I1
def
= {s ∈ S | s |= 〈coffee〉 true}

Now we have that s |= 〈coffee〉 true if

γr(s)(coffee)(I2)≥ 1 where I2
def
= {s ∈ S | s |= true}= {s1,s2,s3}

Therefore

I1 = {s | γr(s)(coffee)(I2)≥ 1}= {s | γr(s)(coffee)({s1,s2,s3})≥ 1}= {s2}

Finally
γr(s1)(1¤){s2}= 2/3≥ 1/2

15.3 DTMC with Nondeterminism

In this section we add nondeterminism to generative and reactive systems. Corre-
spondingly, we introduce two classes of models called Segala automata and simple
Segala automata, named after Roberto Segala who developed them in 1995. In
both cases we use nondeterminism to allow the system to choose between different
probability distributions.

15.3.1 Segala Automata

Segala automata are generative systems that combine probability and nondetermin-
ism. When the system has to move from a state to another, first of all it has to
nondeterministically choose a probability distribution, then it uses this information
to perform the transition. Formally the transition function of a Segala automaton is
defined as follows:

αs : S→P(D(L×S))

As we can see, to each state there corresponds a set of probability distributions
D(L×S) that are defined on pairs of labels and states. Note that in this case it is not
necessary to have the singleton 1 to explicitly model deadlock states, because we can
use the empty set for this purpose.

Example 15.3 (Segala automata). Let us consider the system in Figure 15.2. We have
an automaton with five states, named s1 to s5, represented as usual by black-filled
circles. When in the state s1, the system can choose nondeterministically (dashed
arrows) between two different distributions d1 and d2:

αs(s1) = {d1,d2} where
{

d1(flip,s2) = 1/2 d1(flop,s3) = 1/2
d2(flip,s2) = 2/3 d2(flop,s3) = 1/3



338 15 Discrete Time Markov Chains with Actions and Nondeterminism

◦
flip 1/2 //

flop

��
1/2

d1 • beep //
s2

•
s4

•

88

&&

s1

◦
flop 1/3

//

flip

AA

2/3

d2
•

buzz
//

s3
•
s5

Fig. 15.2: A Segala automaton

(we leave implicit that d1(l,s) = 0 and d2(l,s) = 0 for all other label-state pairs).
From states s2 and s3 there is just one choice available, respectively the trivial

distributions d3 and d4 that are omitted from the picture for conciseness of the
representation:

αs(s2) = {d3} where d3(beep,s4) = 1
αs(s3) = {d4} where d4(buzz,s5) = 1

Finally, from states s4 and s5 there are simply no choices available, i.e., they are
deadlock states:

αs(s4) = αs(s5) =∅

15.3.2 Simple Segala Automata

Now we present the reactive version of Segala automata. In this case we have that
the system can react to an external stimulation by using a probability distribution.
Since we can have more than one distribution for each label, the system uses nonde-
terminism to choose between different distributions for the same label. Formally the
transition function of a simple Segala automaton is defined as follows:

αsimS : S→P(L×D(S))

Example 15.4 (A simple Segala automaton). Let us consider the system in Fig-
ure 15.3, where we assume some suitable probability value ε has been given. We have
six states (represented by black-filled circles, as usual): the state s1 has two possible
inputs, a and c, moreover the label a has associated two different distributions d1 and
d3, while c has associated a unique distribution d2. All the other states are deadlock.
Formally the system is defined by letting

αsimS(s1) = {(a,d1),(c,d2),(a,d3)} where

d1(s2) = 1/2 d1(s3) = 1/2
d2(s4) = 1/3 d2(s5) = 2/3
d3(s1) = ε d3(s6) = 1− ε
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Fig. 15.3: A simple Segala automaton

and αsimS(s2) = αsimS(s3) = αsimS(s4) = αsimS(s5) = αsimS(s6) =∅.

15.3.3 Nondeterminism, Probability and Actions

As we have seen, there are many ways to combine probability, nondeterminism and
actions. We conclude this chapter by mentioning two other interesting models which
can be obtained by redefining the transition function of a PTS.

The first class of systems is that of alternating transition systems. In this case we
allow the system to perform two types of transition: one using probability distribu-
tions and one using nondeterminism. An alternating system can be defined formally
by a transition function of the form

αa : S→ (D(S)+P(L×S))

So in this kind of system we can alternate probabilistic and nondeterministic choices
and can partition the states accordingly. (Again, a state s is deadlock when αa(s) =
∅.)

The second type of system that we present is that of bundle transition systems.
In this case the system associates a distribution with subsets of nondeterministic
choices. Formally, the transition function has the form

αb : S→D(P(L×S))

So when a bundle transition system has to perform a transition, first of all it uses a
probability distribution to choose a set of possible choices, then it nondeterministi-
cally picks one of these.
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Problems

15.1. In what sense is a Segala automaton the most general model?

1. Show in what way a generative LTS, a reactive LTS and a simple Segala automaton
can be interpreted as (generative) Segala automata.

2. Explain the difficulties in representing a generative LTS as a simple Segala
automaton.

15.2. Consider the following three reactive LTSs. For every pair of systems, check
whether their initial states are bisimilar. If they are, describe the bisimulation; if they
are not, find a formula of the Larsen-Skou logic that distinguishes them.
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15.3. Define formally the notion of bisimulation/bisimilarity for simple Segala au-
tomata. Then apply the partition refinement algorithm to the automata below to check
which are the bisimilar states.
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15.4. Let a non-stopping, reactive, probabilistic labelled transition system (PLTS) be
a reactive system with α : S→ L→D(S) (rather than α : S→ L→ (D(S)∪1)).

1. Prove that all the states of a non-stopping, reactive PLTS are bisimilar.
2. Then give the definition of bisimilarity also for generative PLTSs.
3. Furthermore, consider the non-stopping subclass of generative PLTSs and show

an example where some states are not bisimilar.
4. Moreover, give the definition of bisimilarity also for Segala PLTSs, and show that

Segala bisimilarity reduces to generative PLTS bisimilarity in the deterministic
case (namely when, for every state s, α(s) is a singleton).



Chapter 16
PEPA - Performance Evaluation Process
Algebra

He who is slowest in making a promise is most faithful in its
performance. (Jean-Jacques Rousseau)

Abstract The probabilistic and stochastic models we have presented in previous
chapters represent system behaviour but not its structure, i.e., they take a mono-
lithic view and do not make explicit how the system is composed and what are
the interacting components of which it is made. In this last chapter we introduce a
language, called PEPA (Performance Evaluation Process Algebra), for composing
stochastic processes and carrying out their quantitative analysis. PEPA builds on
CSP (Communicating Sequential Processes), a process algebra similar to CCS but
with slightly different primitives. In particular, it relies on multiway communication
instead of binary (I/O) communication. PEPA actions are labelled with rates and
without much effort a CTMC can be derived from the LTS of a PEPA process to
evaluate quantitative properties of the modelled system. The advantage is that the
PEPA description of the CTMC remains as a blueprint of the system and allows
direct re-use of processes.

16.1 From Qualitative to Quantitative Analysis

To understand the differences between qualitative analysis and quantitative analysis,
we remark that qualitative questions such as:

• Will the system reach a particular state?
• Does the system implementation match its specification?
• Does a given property φ hold within the system?

are replaced by quantitative questions such as:

• How long will the system take on average to reach a particular state?
• With what probability does the system implementation match its specification?
• Does a given property φ hold within the system within time t with probability p?

Jane Hillston defined the PEPA language in 1994. PEPA has been developed
as a high-level language for the description of continuous time Markov chains.

© Springer International Publishing Switzerland 2017
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Over the years PEPA has been shown to provide an expressive formal language for
modelling distributed systems. PEPA models are obtained as the structured assembly
of components that perform individual activities at certain rates and can cooperate
on shared actions. The most important features of PEPA w.r.t. other approaches to
performance modelling are

compositionality: the ability to model a system as the interaction of subsys-
tems, as opposed to less modular approaches;

formality: a rigorous semantics giving a precise meaning to all terms
in the language and resolving any ambiguities;

abstraction: the ability to build up complex models from components,
disregarding the details when it is appropriate to do so;

separation of concerns: the ability to model the components and the interaction
separately;

structure: the ability to impose a clear structure on models, which
makes them more understandable and easier to maintain;

refinement: the ability to construct models systematically by refining
their specifications;

reusability: the ability to maintain a library of model components.

For example, queueing networks offer compositionality but not formality; stochas-
tic extensions of Petri nets offer formality but not compositionality; neither offers
abstraction mechanisms.

PEPA was obtained by extending CSP (Communicating Sequential Processes)
with probabilities. We start with a brief introduction to CSP, then we will conclude
with the presentation of the syntax and operational semantics of PEPA.

16.2 CSP

Communicating Sequential Processes (CSP) is a process algebra introduced by Tony
Hoare in 1978 and is a very powerful tool for systems specification and verification.
Contrary to CCS, CSP actions have no dual counterpart and synchronisation between
two or more processes is possible when they all perform the same action α (in
which case the observable label of the synchronisation is still α). Since during
communication the joint action remains visible to the environment, it can be used to
interact with other (more than two) processes, realising multiway synchronisation.

16.2.1 Syntax of CSP

We assume that a set Λ of actions α is given. The syntax of CSP processes is defined
below, where L⊆Λ is any set of actions:
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P,Q ::= nil | α.P | P+Q | P ��
L

Q | P/L | C

We briefly comment on each operator:

nil: is the inactive process;
α.P: is a process which can perform an action α and then behaves like P;
P+Q: is a process which can choose to behave like P or like Q;
P/L: is the hiding operator; if P performs an action α ∈ L then P/L performs

an unobservable silent action τ;
P ��

L
Q: is a synchronisation operator, also called the cooperation combinator.

More precisely, it denotes an indexed family of operators, one for each
possible set of actions L. The set L is called the cooperation set and fixes
the set of shared actions between P and Q. Processes P and Q can use
the actions in L to synchronise with each other. The actions not included
in L are called individual activities and can be performed separately by P
and Q. As a special case, if L =∅ then all the actions of P and Q are just
interleaved;

C: is the name, called a constant, of a recursively defined process that we
assume to be given in a separate set ∆ = {Ci

def
= Pi}i∈I of declarations.

16.2.2 Operational Semantics of CSP

Now we present the semantics of CSP. As we have done for CCS and the π-calculus,
we define the operational semantics of CSP as an LTS derived by a set of inference
rules. As usual, theorems take the form P α−→ P′, meaning that the process P evolves
in one step to the process P′ by executing the action α .

16.2.2.1 Inactive Process

There is no rule for the inactive process nil.

16.2.2.2 Action Prefix and Choice

The rules for action prefix and choice operators are the same as in CCS.

α.P α−→ P

P α−→ P′

P+Q α−→ P′
Q α−→ Q′

P+Q α−→ Q′
.
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16.2.2.3 Hiding

The hiding operator should not be confused with the restriction operator of CCS: first,
hiding takes a set L of labels as a parameter, while restriction takes a single action;
second, when P α−→ P′ with α ∈ L we have that P/L τ−→ P′/L, while P\α blocks the
action. Instead, P/L and P\α behave similarly w.r.t. actions not included in L∪{α}.

P α−→ P′ α /∈ L

P/L α−→ P′/L

P α−→ P′ α ∈ L

P/L τ−→ P′/L

16.2.2.4 Cooperation Combinator

There are three rules for the cooperation combinator ��
L

: the first two rules allow
the interleaving of actions not in L, while the third rule forces the synchronisation of
the two processes when performing actions in L. Differently from CCS, when two
processes synchronise on α the observed label is still α and not τ:

P α−→ P′ α /∈ L

P ��
L

Q α−→ P′��
L

Q

Q α−→ Q′ α /∈ L

P ��
L

Q α−→ P ��
L

Q′
P α−→ P′ Q α−→ Q′ α ∈ L

P ��
L

Q α−→ P′��
L

Q′

Note that the cooperation combinator is not associative. For example

(α.β .nil ��{α} nil)��
∅

α.nil 6= (α.β .nil)��{α} (nil ��
∅

α.nil)

In fact the leftmost process can perform only an action α

(α.β .nil ��{α} nil)��
∅

α.nil α−→ (α.β .nil ��{α} nil)��
∅

nil

after which it is deadlock, whereas the rightmost process can perform a synchronisa-
tion on α and then it can perform another action β

(α.β .nil)��{α} (nil ��
∅

α.nil) α−→ (β .nil)��{α} (nil ��
∅

nil) β−→ nil ��{α} (nil ��
∅

nil)

16.2.2.5 Constants

Finally, the rule for constants unfolds the recursive definition C def
= P, so that C has

all transitions that P has.
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(C def
= P) ∈ ∆ P α−→ P′

C α−→ P′

16.3 PEPA

As we said, PEPA is obtained by adding probabilities to the execution of actions.
As we will see, PEPA processes are stochastic: there are no explicit probabilistic
operators in PEPA, but probabilistic behaviour is obtained by associating an expo-
nentially distributed continuous random variable with each action prefix; this random
variable represents the time needed to execute the action. These random variables
lead to a clear relationship between the process algebra model and a CTMC. Via this
underlying Markov process, performance measures can then be extracted from the
model.

16.3.1 Syntax of PEPA

In PEPA an action is a pair (α,r), where α is the action type and r is the rate of the
continuous random variable associated with the action. The rate r can be any positive
real number. The grammar for PEPA processes is given below:

P,Q ::= nil | (α,r).P | P+Q | P ��
L

Q | P/L | C

(α,r).P: is a process which can perform an action α and then behaves like P.
In this case the rate r is used to define the exponential variable which
describes the duration of the action. A component may have a purely
sequential behaviour, repeatedly undertaking one activity after another
and possibly returning to its initial state. As a simple example, consider a
web server in a distributed system that can serve one request at a time:

WS def
= (request,>).(serve,µ).(respond,>).WS.

In some cases, as here, the rate of an action falls outside the control of the
component: such actions are carried out jointly with another component,
with the current component playing some sort of passive role. For ex-
ample, the web server is passive with respect to the request and respond
actions, as it cannot influence the rate at which applications execute these
actions. This is recorded by using the distinguished rate > which we can
assume to represent an extremely high value that cannot influence the
rates of interacting components.

P+Q: has the same meaning as the CSP operator for choice. For example,
we can consider an application in a distributed system that can either
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access a locally available method (with probability p1) or access a remote
web service (with probability p2 = 1− p1). The decision is taken by
performing a think action which is parametric to the rate λ :

Appl def
= (think, p1 ·λ ).(local,m).Appl

+ (think, p2 ·λ ).(request,rq).(respond,rp).Appl

P ��
L

Q: has the same meaning as the CSP operator. In the web service example,
we can assume that the application and the web server interact over the
set of shared actions L = {request,respond}:

Sys def
= (Appl ��

∅
Appl)��

L
WS

During the interaction, the resulting action will have the same type as the
shared action and a rate reflecting the rate of the slowest action.

P/L: is the same as the CSP hiding operator: the duration of the action is
unaffected, but its type becomes τ . In our running example, we may want
to hide the local computation of Appl from the environment:

Appl′ def
= Appl/{local}

C: is the name of a recursively defined process such as C def
= P that we

assume to be available in a separate set ∆ of declarations. Using recursive
definitions like the ones given above for Appl and WS, we are able
to describe components with infinite behaviour without introducing an
explicit recursion or replication operator.

Usually we are interested only in those agents which have an ergodic underlying
Markov process, since we want to apply steady state analysis. It has been shown that
it is possible to ensure ergodicity by using syntactic restrictions on the agents. In
particular, the class of PEPA terms which satisfy these syntactic conditions are called
cyclic components and they can be described by the following grammar:

P,Q ::= S | P ��
L

Q | P/L

S,T ::= (α,r).S | S+T | C

where sequential processes S and T can be distinguished from general processes P
and Q, and it is required that each recursive process C is sequential, i.e., it must be
that (C def

= S) ∈ ∆ for some sequential process S.
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16.3.2 Operational Semantics of PEPA

PEPA operational semantics is defined by a rule system similar to the one for CSP.

In the case of PEPA, well-formed formulas have the form P
(α,r)−−−→ Q for suitable

PEPA processes P and Q, activity α and rate r. We assume a set ∆ of declarations is
available.

16.3.2.1 Inactive Process

As usual, there is no rule for the inactive process nil.

16.3.2.2 Action Prefix and Choice

The rules for action prefix and choice are essentially the same as the ones for CSP:
the only difference is that the rate r is recorded in the label of transitions.

(α,r).P
(α,r)−−−→ P

P
(α,r)−−−→ P′

P+Q
(α,r)−−−→ P′

Q
(α,r)−−−→ Q′

P+Q
(α,r)−−−→ Q′

16.3.2.3 Constants

The rule for constants is the same as that of CSP, except for the fact that transition
labels also carry the rate.

(C def
= P) ∈ ∆ P

(α ,r)−−−→ P′

C
(α,r)−−−→ P′

16.3.2.4 Hiding

Also the rules for hiding resemble the ones for CSP. Note that when P
(α ,r)−−−→ P′ with

α ∈ L, the rate r is associated with τ in P/L
(τ,r)−−→ P′/L.

P
(α ,r)−−−→ P′ α /∈ L

P/L
(α,r)−−−→ P′/L

P
(α,r)−−−→ P′ α ∈ L

P/L
(τ,r)−−→ P′/L
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16.3.2.5 Cooperation Combinator

As for CSP, we have three rules for the cooperation combinator. The first two rules
are for action interleaving and deserve no further comment.

P
(α ,r)−−−→ P′ α /∈ L

P ��
L

Q
(α,r)−−−→ P′��

L
Q

Q
(α,r)−−−→ Q′ α /∈ L

P ��
L

Q
(α ,r)−−−→ P ��

L
Q′

The third rule, called the cooperation rule (see below), is the most interesting
one, because it deals with synchronisation and with the need to combine rates. The
cooperation rule exploits the so-called apparent rate of action α in P, written rα(P),
which is defined by structural recursion as follows:

rα(nil) def
= 0

rα((β ,r).P)
def
=

{
r if α = β

0 if α 6= β

rα(P+Q)
def
= rα(P)+ rα(Q)

rα(P/L) def
=

{
rα(P) if α 6∈ L
0 if α ∈ L

rα(P ��
L

Q)
def
=

{
min(rα(P),rα(Q)) if α ∈ L
rα(P)+ rα(Q) if α 6∈ L

rα(C)
def
= rα(P) if (C def

= P) ∈ ∆

Roughly, the apparent rate rα(S) is the sum of the rates of all distinct actions α

that can be performed by S; thus rα(S) expresses the overall rate of α in S (because
of the property of rates of exponentially distributed variables in Theorem 14.2).
Notably, in the case of shared actions, the apparent rate of P ��

L
Q is the slower of

the apparent rates of P and Q. The cooperation rule is

P
(α,r1)−−−→ P′ Q

(α,r2)−−−→ Q′ α ∈ L

P ��
L

Q
(α,r)−−−→ P′��

L
Q′

where r = rα(P ��
L

Q)× r1

rα(P)
× r2

rα(Q)

Let us now explain the calculation

r = rα(P ��
L

Q)× r1

rα(P)
× r2

rα(Q)

that appears in the cooperation rule. The best way to resolve what should be the rate
of the shared action has been a topic of some debate. The definition of cooperation
in PEPA is based on the assumption that a component cannot be made to exceed its
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bounded capacity for carrying out the shared actions, where the bounded capacity
consists of the apparent rate of the action. The underlying assumption is that the
choice of a specific action (with rate ri) to carry on the shared activity occurs
independently in the two cooperating components P and Q. Now, the probability that
a specific action (α,ri) is chosen by P is (see Theorem 14.3)

ri

rα(P)
.

Then, as choices are independent, we obtain the combined probability

r1

rα(P)
× r2

rα(Q)

Finally, the resulting rate is the product of the apparent rate

rα(P ��
L

Q) = min(rα(P),rα(Q))

and the above probability. Notice that if we sum up the rates of all possible synchro-
nisations on α of P ��

L
Q we just get min(rα(P),rα(Q)) (see the example below).

Example 16.1. Let us define two PEPA agents as follows:

P def
= (α,r).P1 + . . .+(α,r).Pn Q def

= (α,r).Q1 + . . .+(α,r).Qm

for some n≤ m. So we have the following apparent rates:

rα(P)
def
= n× r

rα(Q)
def
= m× r

rα(P ��
{α} Q)

def
= min(rα(P),rα(Q)) = n× r

By the rules for action prefix and choice, we have transitions

P
(α,r)−−−→ Pi for i ∈ [1,n] Q

(α ,r)−−−→ Q j for j ∈ [1,m]

Then we have m×n possible ways of synchronising P and Q:

P ��
{α} Q

(α,r′)−−−→ Pi ��{α} Q j for i ∈ [1,n] and j ∈ [1,m]

where
r′ = (n× r)× r

n× r
× r

m× r
=

r
m

So we have m× n transitions with rate r/m and, in fact, the apparent rate of the
synchronisation is

m×n× r
m

= n× r = rα(P ��
{α} Q)
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Example 16.2. Let us consider the PEPA process S def
= C1 ��{α} C2, where

C1
def
= (α,r1).C1 +(β ,r2).C1 C2

def
= (α,>).C2+(β ,r2).C2

The corresponding LTS has one state and two (self looping) transitions with labels
(α,r1) and (β ,2r2): the former models the cooperation between the two components
C1 and C2 on the shared action α , while the latter models the two possible ways
of executing the action β . In the first case, the rate > associated with C2 does not
influence the observable rate of α in S. In the second case, the apparent rate of action
β is the sum of the rates for β in C1 and in C2.

Remark 16.1. The selection of the exponential distribution as the governing distri-
bution for action durations in PEPA has profound consequences. In terms of the
underlying stochastic process, it is the only choice which gives rise to a Markov
process. This is due to the memoryless properties of the exponential distribution: the
time until the next event is independent of the time since the last event, because the
exponential distribution forgets how long it has already waited. For instance, if we
consider the process (α,r).nil ��

∅
(β ,s).nil and the system performs the action α ,

the time needed to complete β from nil ��
∅

(β ,s).nil does not need to consider the
time already taken to carry out the action α .

The underlying CTMC is obtained from the LTS by associating a (global) state
with each process, and the transitions between states are derived from the transitions
of the LTS. If in the LTS several transitions are possible between two processes,
since all activity durations are exponentially distributed, in the CTMC there will be a
single transition with a total transition rate which is the sum of the rates.

The PEPA language is supported by a range of tools and by a wide community of
users. PEPA application areas span the subject areas of informatics and engineering.
Additional information and the PEPA Eclipse Plug-in are freely available at http:
//www.dcs.ed.ac.uk/pepa/.

We conclude this section by showing a famous example by Jane Hillston of
modelling with PEPA.

Example 16.3 (Roland the gunman). We want to model a Far West duel. We have
two main characters: Roland the gunman and his enemies. Upon his travels Roland
will encounter some enemies with whom he will have no choice but to fight back. For
simplicity we assume that Roland has two guns with one bullet in each and that each
hit is fatal. We also assume that a sense of honour prevents an enemy from attacking
Roland if he is already involved in a gunfight. We model the behaviour of Roland
as follows. Normally, Roland is in an idle state Rolandidle, but when he is attacked
(attacks) he moves to state Roland2, where he has two bullets available in his guns

Rolandidle
def
= (attack,>).Roland2

In front of his enemy, Roland can act in three ways: if Roland hits the enemy then
he reloads his gun and returns to idle; if Roland misses the enemy he tries a second
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attack (see Roland1); finally if an enemy hits Roland, he dies:

Roland2
def
= (hit,rhit).(reload,rreload).Rolandidle

+(miss,rmiss).Roland1
+(e-hit,>).Rolanddead

The second attempt to shoot by Roland is analogous to the first one, but this time it is
the last bullet in Roland’s gun and if the enemy is missed no further shot is possible
in Rolandempty until the gun is reloaded:

Roland1
def
= (hit,rhit).(reload,rreload).Rolandidle

+(miss,rmiss).Rolandempty
+(e-hit,>).Rolanddead

Rolandempty
def
= (reload,rreload).Roland2

+(e-hit,>).Rolanddead

Finally if Roland is dead he cannot perform any action.

Rolanddead
def
= nil

We describe enemies’ behaviour as follows. If the enemies are idle they can try to
attack Roland:

Enemiesidle
def
= (attack,rattack).Enemiesattack

Enemies shoot once and either get hit or they hit Roland:

Enemiesattack
def
= (e-hit,re-hit).Enemiesidle

+(hit,>).Enemiesidle

The rates involved in the model are measured in seconds, so a rate of 1.0 would
indicate that the action is expected to occur once every second. We define the
following rates:

> = about ∞

rfire = 1 one shot per second
rhit-success = 0.8 80% chance of success

rhit = 0.8 rfire× rhit-success
rmiss = 0.2 rfire× (1− rhit-success)

rreload = 0.3 3 seconds to reload
rattack = 0.01 Roland is attacked once every 100 seconds
re-hit = 0.02 Enemies can hit once every 50 seconds

So we model the duel as follows:

Duel def
= Rolandidle ��

{hit,attack,e−hit}Enemiesidle
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We can perform various types of analysis of the system by using standard methods.
Using the steady state analysis, that we have seen in the previous chapters, we can
prove that Roland will always die and the system will deadlock, because there is an
infinite supply of enemies (so the system is not ergodic). Moreover we can answer
many other questions by using the following techniques:

• Transient analysis: we can ask for the probability that Roland is dead after 1 hour,
or the probability that Roland will have killed some enemy within 30 minutes.

• Passage time analysis: we can ask for the probability of at least 10 seconds passing
from the first attack on Roland until the time he has hit three enemies, or the
probability that 1 minute after he is attacked Roland has killed his attacker (i.e.,
the probability that the model performs a hit action within 1 minute after having
performed an attack action).

Problems

16.1. We have defined CTMC bisimilarity in the case of unlabelled transition systems,
while the PEPA transition system is labelled. Extend the definition of bisimilarity to
the labelled version.

16.2. Consider a simple system in which a process repeatedly carries out some task.
In order to complete its task the process needs access to a resource for part, but not
all, of the time. We want to model the process and the resource as two separate PEPA
agents: Process and Resource, respectively. The Process will undertake two activities
consecutively: get with some rate rg, in cooperation with the Resource, and task at
rate rt, representing the remainder of its processing task. Similarly the Resource will
engage in two activities consecutively: get, at a rate rg′ > 2rg and update, at rate ru.

1. Give the PEPA specification of a system composed of two Processes that compete
for one shared Resource.

2. What is the apparent rate of action get in the initial state of the system?
3. Draw the complete LTS (eight states) of the system and list all its transitions.

16.3. In a multiprocessor system with shared memory, processes must compete to
use the memory bus. Consider the case of two identical processes. Each process
has cyclic behaviour: it performs some local activity (local action think), accesses
the bus (synchronisation action get), operates on the memory (local action use) and
then releases the bus (synchronisation action rel). The bus has cyclic behaviour with
actions get and rel. Define a PEPA program representing the system and derive the
corresponding CTMC (with actions). Find the bisimilar states according to the notion
of bisimilarity in Problem 16.1 and draw the minimal CTMC.

16.4. Consider the taxi driver scenario from Problem 14.4, but this time represented
as the CTMC in the figure below, where rates are defined in 1/minutes, e.g., customers
show up every 10 minutes (rate 0.1/min) and rides last 20 minutes (rate 0.05/min) .
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Assuming a unique label l for all the transitions, and disregarding self loops, define
a PEPA agent for the system, and show that all states are different in terms of
bisimilarity. Finally, to study the steady state behaviour of the system, introduce
the self loops,1 and write and solve a system of linear equations similar to the one
seen for DTMCs: π Q = 0 and ∑i πi = 1. The equations express the fact that, for
every state si, the probability flow from the other states to state si is the same as the
probability flow from state si to the other states.

16.5. Consider the taxi driver scenario from Problem 16.4, but this time with the
option of going back to state s1 (parking) from state s2 (moving slowly looking for
customers) as in the figure below:

s1

−0.2/min
��

0.1/min   
0.1/min

~~
s3

−0.05/min

KK

0.05/min
11

s2

−1.1/min

SS1/min
oo

0.1/min
mm

Define a PEPA agent for the system, and show that all states are different in terms
of bisimilarity. Finally, to study the steady state behaviour of the system, introduce
the self loops, decorated with suitable negative rates, and write and solve a system
of linear equations similar to the one seen for DTMCs: π Q = 0 and ∑i πi = 1. The
equations express the fact that, for every state si, the probability flow from the other
states to state si is the same as the probability flow from state si to the other states
(see Section 14.4.5).

16.6. Let the (infinitely many) PEPA processes {Aα ,Bβ}, indexed by strings α,β ∈
{0,1}∗, be defined as

Aα

def
= (a,λ ).Bα0 +(a,λ ).Bα1 Bβ

def
= (b,λ ).Aβ0 +(b,λ ).Aβ1

Consider the (sequential) PEPA program P def
= Aε , for ε the empty string:

1 Recall that, in the infinitesimal generator matrix of a CTMC, self loops are decorated with negative
rates which are negated apparent rates, namely the negated sums of all the outgoing rates.
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1. draw (at least in part) the transition system of P;
2. find the states reachable from P;
3. determine the bisimilar states;
4. finally, find the smallest PEPA program bisimilar to P.

16.7. Let the (infinitely many) PEPA processes Aα , indexed by strings α ∈ {0,1}∗,
be defined as

Aα

def
= (a,λ ).Aα0 +(a,λ ).Aα1

Consider the (sequential) PEPA program P def
= Aε , for ε the empty string:

1. draw (at least in part) the transition system of P;
2. find the states reachable from P;
3. determine the bisimilar states;
4. finally, find the smallest PEPA program bisimilar to P.

16.8. Consider the PEPA process A with

A def
= (α,λ ).B+(α,λ ).C B def

= (α,λ ).A+(α,λ ).C C def
= (α,λ ).A

and derive the corresponding finite-state CTMC.

1. What is the probability distribution of staying in B?
2. If λ = 0.1 sec−1, what is the probability that the system will still be in B after 10

seconds?
3. Are there bisimilar states?
4. Finally, to study the steady state behaviour of the system, introduce the self loops,

decorated with suitable negative rates, show that the system is ergodic and write
and solve a system of linear equations similar to the one seen for DTMCs.

16.9. Consider n transmitters T0,T1, . . . ,Tn−1 connected by a token ring. At any
moment, a transmitter i can be ready to transmit or not ready. It becomes ready with
a private action arrive and a rate λ . Once ready, it stays ready until it transmits, and
then it becomes not ready with an action servei and rate µ . To resolve conflicts, only
the transmitter with the token can operate. There is only one token K, which at any
moment is located at some transmitter Ti. If transmitter Ti is not ready, the token
synchronises with it with an action walkoni and rate ω moving from transmitter Ti to
transmitter Ti+1 (mod n). If transmitter Ti is ready, the token synchronises with it with
action servei and rate µ and stays at transmitter Ti.

Write a PEPA process modelling the above system as follows:

1. define recursively all the states of Ti, for i ∈ [0,n−1], and of K;
2. define the whole system by choosing the initial state where all transmitters are not

ready and the token at T0 and composing in parallel all of them with ��
L

, with L
being the set of synchronised actions;

3. draw the LTS for the case n = 2, and compute the bisimilarity relation;
4. define a function f such that f (n) is the number of (reachable) states for the

system with n transmitters.
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Problems of Chapter 2

2.1

1. The strings in LB are all nonempty sequences of bs. The strings in LA are all
nonempty sequences of as followed by strings in LB.

2. Letting sn denote the string obtained by concatenating n replicas of the string s,
we have LB = {bn | n > 0} and LA = {anbm | n,m > 0}.

3.
s ∈ LA

a s ∈ LA
(1)

s ∈ LB

a s ∈ LA
(2)

b ∈ LB
(3)

s ∈ LB

b s ∈ LB
(4)

4. Proof tree: Goal-oriented derivation:

(3)
b ∈ LB

(4)
b b ∈ LB

(2)
a b b ∈ LA

(1)
a a b b ∈ LA

(1)
a a a b b ∈ LA

a a a b b ∈ LA ↖ a a b b ∈ LA
↖ a b b ∈ LA
↖ b b ∈ LB
↖ b ∈ LB
↖ �

5. We first prove the correspondence for B, i.e., that s ∈ LB is a theorem iff there
exists some n > 0 with s = bn. For the ‘only if’ part, by rule induction, since
s ∈ LB, either s = b (by rule (3)), or s = b s′ for some s′ ∈ LB (by rule (4)). In the
former case, we take n = 1 and we are done. In the latter case, by s′ ∈ LB we have
that there is n′ > 0 with s′ = bn′ and take n = n′+1. For the ‘if’ part, by induction
on n, if n = 1 we conclude by applying axiom (3); if n = n′+1, we can assume
that bn′ ∈ LB and conclude by applying rule (4).
Then we prove the correspondence for A, i.e., that s ∈ LA is a theorem iff there
exists some n,m > 0 with s = anbm. For the ‘only if’ part, by rule induction,
since s ∈ LA, either s = a s′ for some s′ ∈ LA (by rule (1)), or s = a s′ for some
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s′ ∈ LB (by rule (2)). In the former case, by s′ ∈ LA we have that there is n′,m′ > 0
with s′ = an′bn′ and take n = n′+ 1, m = m′. In the latter case, by the previous
correspondence on B, by s′ ∈ LB we have that s′ = bk for some k > 0 and conclude
by taking n = 1 and m = k. For the ‘if’ part, take s = anbm. By induction on n, if
n = 1 we conclude by applying axiom (2), since for the previous correspondence
we know that bm ∈ LB; if n = n′+1, we can assume that an′bm ∈ LA and conclude
by applying rule (1).

2.3

1. The predicate even(x) is a theorem iff x represents an even number (i.e., x is the
repeated application of s(·) to 0 for an even number of times).

2. The predicate odd(x) is not a theorem for any x, because there is no axiom.
3. The predicate leq(x,y) is a theorem iff x represents a natural number which is less

than or equal to the natural number represented by y.

2.5 Take t = s(x) and t ′ = s(y).

2.8

fib(0 , 1) :− .

fib(s(0) , 1) :− .

fib(s(s(x)) , y) :− fib(x , u) , fib(s(x) , v) , sum(u , v , y).

2.11 Pgvdrk is intelligent.

Problems of Chapter 3

3.2 Let us denote by c the body of the while command:

c def
= if y = 0 then y := y+1 else skip

Let us take a generic memory σ and consider the goal 〈w,σ〉 → σ ′.
If σ(y)< 0 we have

〈w,σ〉 → σ
′ ↖σ ′=σ 〈y≥ 0,σ〉 → false
↖∗ �

If instead σ(y)> 0, we have

〈w,σ〉 → σ
′ ↖ 〈y≥ 0,σ〉 → true , 〈c,σ〉 → σ

′′ , 〈w,σ ′′〉 → σ
′

↖∗ 〈c,σ〉 → σ
′′ , 〈w,σ ′′〉 → σ

′

↖∗ 〈skip,σ〉 → σ
′′ , 〈w,σ ′′〉 → σ

′

↖∗
σ ′′=σ

〈w,σ〉 → σ
′
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Since we reach the same goal from which we started, the command diverges.
Finally, if instead σ(y) = 0, we have

〈w,σ〉 → σ
′ ↖ 〈y≥ 0,σ〉 → true , 〈c,σ〉 → σ

′′ , 〈w,σ ′′〉 → σ
′

↖∗ 〈c,σ〉 → σ
′′ , 〈w,σ ′′〉 → σ

′

↖∗ 〈y := y+1,σ〉 → σ
′′ , 〈w,σ ′′〉 → σ

′

↖∗
σ ′′=σ [1/y]

〈w,σ [1/y]〉 → σ
′

We reach a goal where w is to be evaluated in a memory σ [1/y] such that
σ [1/y](y) > 0. Thus we are in the previous case and we know that the command
diverges.

Summing up, 〈w,σ〉 → σ ′ iff σ(y)< 0∧σ ′ = σ .

3.4 Let us denote by c′ the body of c2:

c′ def
= if b then c else skip

We proceed by contradiction. First, assume that there exist σ ,σ ′ such that 〈c1,σ〉 →
σ ′ and 〈c2,σ〉 6→ σ ′. Let us take such σ ,σ ′ for which 〈c1,σ〉 → σ ′ has the shortest
derivation.

If 〈b,σ〉 → false, we have

〈c1,σ〉 → σ
′ ↖σ ′=σ 〈b,σ〉 → false
↖∗ �

〈c2,σ〉 → σ
′ ↖σ ′=σ 〈b,σ〉 → false
↖∗ �

Thus it must be 〈b,σ〉 → true. In this case, we have

〈c1,σ〉 → σ
′ ↖ 〈b,σ〉 → true , 〈c,σ〉 → σ

′′ , 〈c1,σ
′′〉 → σ

′

↖∗ 〈c,σ〉 → σ
′′ , 〈c1,σ

′′〉 → σ
′

〈c2,σ〉 → σ
′ ↖ 〈b,σ〉 → true , 〈c′,σ〉 → σ

′′ , 〈c2,σ
′′〉 → σ

′

↖∗ 〈c′,σ〉 → σ
′′ , 〈c2,σ

′′〉 → σ
′

↖ 〈b,σ〉 → true , 〈c,σ〉 → σ
′′ , 〈c2,σ

′′〉 → σ
′

↖∗ 〈c,σ〉 → σ
′′ , 〈c2,σ

′′〉 → σ
′

Now, since σ and σ ′ were chosen so to allow for the shortest derivation 〈c1,σ〉→
σ ′ that cannot be mimicked by 〈c2,σ〉, it must be the case that 〈c1,σ

′′〉 → σ ′, which
is shorter, can still be mimicked, thus 〈c2,σ

′′〉→σ ′ is provable, but then 〈c2,σ〉→σ ′

holds, leading to a contradiction.
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Second, assume that there exist σ ,σ ′ such that 〈c2,σ〉 → σ ′ and 〈c1,σ〉 6→ σ ′.
Then the proof is completed analogously to the previous case.

3.6 Take any σ such that σ(x) = 0. Then 〈c1,σ〉 → σ , while 〈c2,σ〉 6→.

3.9

1. Take a = 0/0. Then, for any σ , we have, e.g., 〈a,σ〉 → 1 (since 0 = 0×1) and
〈a,σ〉 → 2 (since 0 = 0×2) by straightforward application of rule (div).

2. Take a = 1/2. Then, we cannot find an integer n such that 1 = 2×n and the rule
(div) cannot be applied.

Problems of Chapter 4

4.2 We let

locs(skip) def
= ∅

locs(x := a) def
= {x}

locs(c0;c1) = locs(if b then c0 else c1)
def
= locs(c0)∪ locs(c1)

locs(while b do c) def
= locs(c)

We prove the property

P(〈c,σ〉 → σ
′) def
= ∀y 6∈ locs(c). σ(y) = σ

′(y)

by rule induction.

skip: We need to prove P(〈skip,σ〉 → σ)
def
= ∀y 6∈ locs(skip). σ(y) = σ(y),

which holds trivially.
assign: We need to prove

P(〈x := a,σ〉 → σ [n/x])
def
= ∀y 6∈ locs(x := a). σ(y) = σ [n/x](y)

Trivially locs(x := a) = {x} and ∀y 6= x. σ [n/x](y) = σ(y).
seq: We assume

P(〈c0,σ〉 → σ
′′) def

= ∀y 6∈ locs(c0). σ(y) = σ
′′(y)

P(〈c1,σ
′′〉 → σ

′) def
= ∀y 6∈ locs(c0). σ

′′(y) = σ
′(y)

and we need to prove

P(〈c0;c1,σ〉 → σ
′) def
= ∀y 6∈ locs(c0;c1). σ(y) = σ

′(y)
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Take y 6∈ locs(c0;c1) = locs(c0)∪ locs(c1). It follows that y 6∈ locs(c0) and
y 6∈ locs(c1). By y 6∈ locs(c0) and the first inductive hypothesis we have
σ(y) = σ ′′(y). By y 6∈ locs(c1) and the second inductive hypothesis we
have σ ′′(y) = σ ′(y) . By transitivity, we conclude σ(y) = σ ′(y).

iftt: We assume

P(〈c0,σ〉 → σ
′) def
= ∀y 6∈ locs(c0). σ(y) = σ

′(y)

and we need to prove

P(〈if b then c0 else c1,σ〉 → σ ′) def
=

∀y 6∈ locs(if b then c0 else c1). σ(y) = σ ′(y)

Take y 6∈ locs(if b then c0 else c1) = locs(c0)∪ locs(c1). It follows that
y 6∈ locs(c0) and hence, by the inductive hypothesis, σ(y) = σ ′(y).

ifff: This case is analogous to the previous one and thus omitted.
whff: We need to prove

P(〈while b do c,σ〉 → σ)
def
= ∀y 6∈ locs(while b do c). σ(y) = σ(y)

which is obvious (as for the case of rule skip).
whtt: We assume

P(〈c,σ〉 → σ
′′) def

= ∀y 6∈ locs(c). σ(y) = σ
′′(y)

P(〈while b do c,σ ′′〉 → σ
′) def

= ∀y 6∈ locs(while b do c). σ
′′(y) = σ

′(y)

and we need to prove

P(〈while b do c,σ〉 → σ
′) def
= ∀y 6∈ locs(while b do c). σ(y) = σ

′(y)

Take y 6∈ locs(while b do c) = locs(c). By the first inductive hypothesis,
it follows that σ(y) = σ ′′(y), while by the second inductive hypothesis we
have σ ′′(y) = σ ′(y). By transitivity, we conclude σ(y) = σ ′(y).

4.3 We prove the property

P(〈w,σ〉 → σ
′) def
= σ(x)≥ 0 ∧ σ

′ = σ

[
σ(x)+σ(y)/y,

0 /x

]
by rule induction. Since the property is concerned with the command w, it is enough
to consider the two rules for the while construct.

whff: We assume
〈x 6= 0,σ〉 → false

We need to prove

P(〈w,σ〉 → σ)
def
= σ(x)≥ 0 ∧ σ = σ

[
σ(x)+σ(y)/y,

0 /x

]
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Since 〈x 6= 0,σ〉 → false it follows that σ(x) = 0 and thus σ(x)≥ 0. Then,
σ

[
σ(x)+σ(y)/y,

0 /x

]
= σ

[
0+σ(y)/y,

σ(x) /x

]
= σ

[
σ(y)/y,

σ(x) /x

]
= σ .

whtt: Let c def
= x := x−1;y := y+1. We assume

〈x 6= 0,σ〉 → true 〈c,σ〉 → σ ′′ 〈w,σ ′′〉 → σ ′

P(〈w,σ ′′〉 → σ ′) def
= σ ′′(x)≥ 0 ∧ σ ′ = σ ′′

[
σ ′′(x)+σ ′′(y)/y,

0 /x

]
We need to prove

P(〈w,σ〉 → σ
′) def
= σ(x)≥ 0 ∧ σ

′ = σ

[
σ(x)+σ(y)/y,

0 /x

]
From 〈c,σ〉 → σ ′′ it follows that σ ′′ = σ

[
σ(y)+1/y,

σ(x)−1 /x

]
. By the in-

ductive hypothesis we have σ ′′(x)≥ 0, thus σ(x)≥ 1 and hence σ(x)≥ 0.
Moreover, by the inductive hypothesis, we have also

σ ′ = σ ′′
[

σ ′′(x)+σ ′′(y)/y,
0 /x

]
= σ ′′

[
σ(x)−1+σ(y)+1/y,

0 /x

]
=

σ ′′
[

σ(x)+σ(y)/y,
0 /x

]
= σ

[
σ(x)+σ(y)/y,

0 /x

]
.

4.4 We prove the two implications separately. First we prove the property

P(x R+ y) def
= ∃k > 0. ∃z0, . . . ,zk. x = z0 ∧ z0 R z1 ∧ . . .∧ zk−1 R zk ∧ zk = y

by rule induction.
For the first rule

x R y
x R+ y

we assume x R y and we need to prove P(x R+ y). We take k = 1, z0 = x and z1 = y
and we are done.

For the second rule
x R+ y y R+ z

x R+ z
we assume

P(x R+ y) def
= ∃n > 0. ∃u0, . . . ,un. x = u0 ∧ u0 R u1 ∧ . . .∧ un−1 R un ∧ un = y

P(y R+ z) def
= ∃m > 0. ∃v0, . . . ,vm. y = v0 ∧ v0 R v1 ∧ . . .∧ vm−1 R vm ∧ vm = z

and we need to prove

P(x R+ z) def
= ∃k > 0. ∃z0, . . . ,zk. x = z0 ∧ z0 R z1 ∧ . . .∧ zk−1 R zk ∧ zk = z

Take n,u0, ...,un and m,v0, ...,vm as provided by the inductive hypotheses. We set
k = n+m, from which it follows k > 0 since n > 0 and m > 0. Note that un = y = v0.
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Finally, we let

zi
def
=

{
ui if i ∈ [0,n]
vi−n if i ∈ [n+1,k]

and it is immediate to check that the conditions are satisfied.
To prove the reverse implication, we exploit the logical equivalence

(∃k. A(k))⇒ B ⇔ ∀k. (A(k)⇒ B)

that holds whenever k does not appear (free) in the predicate B, to prove the univer-
sally quantified statement

∀k> 0.∀x,y.
(
(∃z0, . . . ,zk. x = z0 ∧ z0 R z1 ∧ . . .∧ zk−1 R zk ∧ zk = y) ⇒ x R+ y

)
by mathematical induction on k.

The base case is when k = 1. Take generic x and y. We assume the premise

∃z0,z1. x = z0 ∧ z0 R z1 ∧ z1 = y

and the thesis x R+ y follows by applying the first inference rule.
For the inductive case, we assume that

∀x,y.
(
(∃z0, . . . ,zk. x = z0 ∧ z0 R z1 ∧ . . .∧ zk−1 R zk ∧ zk = y) ⇒ x R+ y

)
and we want to prove that

∀x,z.
(
(∃z0, . . . ,zk+1. x = z0 ∧ z0 R z1 ∧ . . .∧ zk R zk+1 ∧ zk+1 = z) ⇒ x R+ z

)
Take generic x,z and assume that there exist z0, . . . ,zk+1 satisfying the premise of the
implication:

x = z0 ∧ z0 R z1 ∧ . . .∧ zk R zk+1 ∧ zk+1 = z

By the inductive hypothesis, it follows that x R+ zk. Moreover, from zk R zk+1 = z we
can apply the first inference rule to derive zk R+ z. Finally, we conclude by applying
the second inference rule to x R+ zk and zk R+ z, obtaining x R+ z.

Regarding the second question, the relation R′ is just the reflexive and transitive
closure of R.

Problems of Chapter 5

5.2

1. It can be readily checked that f is monotone: let us take S1,S2 ∈℘(N), with
S1 ⊆ S2; we need to check that f (S1) ⊆ f (S2). Let x ∈ f (S1) = S1 ∩X . Then
x ∈ S1 and x ∈ X . Since S1 ⊆ S2, we have also x ∈ S2 and thus x ∈ S2∩X = f (S2).
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The case of g is more subtle. Intuitively, the larger S is, the smaller ℘(N)\S is
and consequently (℘(N)\S)∩X . Let us take S1,S2 ∈℘(N), with S1 ⊂ S2, and
let x ∈ S2 \ S1. Then x ∈℘(N) \ S1 and x 6∈℘(N) \ S2. Now if x ∈ X we have
x ∈ g(S1) and x 6∈ g(S2), contradicting the requirement g(S1)⊆ g(S2). Note that,
unless X =∅, such a counterexample can always be constructed.
Let us now address continuity of f and g.
Take a chain {Si }i∈N in ℘(N). We need to prove that f (

⋃
i∈N Si) =

⋃
i∈N f (Si),

i.e., that (
⋃

i∈N Si)∩X =
⋃

i∈N(Si∩X). We have

x ∈
(⋃

i∈N
Si

)
∩X ⇔ x ∈

(⋃
i∈N

Si

)
∧ x ∈ X

⇔ ∃k ∈ N. x ∈ Sk ∧ x ∈ X

⇔ ∃k ∈ N. x ∈ Sk ∩X

⇔ x ∈
⋃
i∈N

(Si∩X)

Since g is in general not monotone, it is not continuous (unless X =∅, in which
case g is the constant function returning ∅ and thus trivially continuous).

2. f is monotone and continuous for any X , while g is monotone and continuous
only when X =∅.

5.3

1. Let D1 be the discrete order with two elements 0 and 1. All chains in D1 are
constant (and finite) and all functions f : D1→ D1 are monotone and continuous.
The identity function f1(x) = x has two fixpoints but no least fixpoint (as discussed
also in Example 5.18).

2. Let D2 = D1. If we let f2(0) = 1 and f2(1) = 0, then f2 has no fixpoint.
3. If D3 is finite, then any chain is finite and any monotone function is continuous.

So we must choose D3 with infinitely many elements. We take D3 and f3 as in
Example 5.17.

5.4 Let us take D = N with the usual “less than or equal to” order. As discussed in
Chapter 5, this is a partial order with bottom but it is not complete, because, e.g., the
chain of even numbers has no upper bound.

1. From what was said above, the chain

0� 2� 4� 6� ·· ·

is an infinite descending chain, and thus D ′ is not well-founded.
2. The answer is no: if D is not complete, then D ′ is not well-founded. To show this,

let us take a chain
d0 v d1 v d2 v ·· ·

that has no least upper bound (it must exist, because D is not complete). The
chain {di}i∈N cannot be finite, as otherwise the maximum element would be the
least upper bound. However, it is not necessarily the case that
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d0 � d1 � d2 � ·· ·

is an infinite descending chain of D ′, because {di}i∈N can contain repeated
elements. To discard clones, we define the function next : N→ N to select the
smallest index with which the ith different element appears in the chain (letting
d0 be the 0th element)

next(0) def
= 0

next(i+1) def
= min{ j | d j 6= d j−1∧next(i)< j}

and take the infinite descending chain

dnext(0) � dnext(1) � dnext(2) � ·· ·

5.5

1. We need to check that v is reflexive, antisymmetric and transitive.

reflexive: for any string α ∈V ∗∪V ∞ we have α = αε and hence α v α ;
antisymmetric: we assume α v β and β v α and we need to prove that α = β ;

let γ and δ be such that β = αγ and α = βδ , then α = αγδ : if
α ∈V ∗, then it must be that γ = δ = ε and α = β ; if α ∈V ∞,
from β = αγ it follows that β = α;

transitive: we assume α v β and β v γ and we need to prove that α v γ;
let δ and ω be such that β = αδ and γ = βω , then γ = αδω

and thus α v γ .

2. To prove that the order is complete we must show that any chain has a limit. Take

α0 v α1 v α2 v ·· · v αn v ·· ·

If the chain is finite, then the greatest element of the chain is the least upper bound.
Otherwise, it must be that αi ∈V ∗ for any i ∈ N and for any length n we can find
a string αkn in the sequence such that |αkn | ≥ n (if not, the chain would be finite).
Then we can construct a string α ∈V ∞ such that for any position n in α the nth
symbol of α appears in the same position in one of the strings in the chain. In fact
we let α(n) def

= αkn(n) and α is the limit of the chain.
3. The bottom element is the empty string ε , in fact for any α ∈V ∗∪V ∞ we have

εα = α and thus ε v α .
4. The maximal elements are all and only the strings in V ∞. In fact, on the one hand,

taking α ∈V ∞ we have

α v β ⇔ ∃γ . β = αγ ⇔ β = α

On the other hand, if α ∈V ∗, then α v αa and α 6= αa.
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Problems of Chapter 6

6.1

1. The expression λx. λx. x is α-convertible to the expressions a, c, e.
2. The expression ((λx. λy. x) y) is equivalent to the expressions d and e.

6.3 Let c′′ def
= if x = 0 then c1 else c2. Using the operational semantics we have

〈c,σ〉 → σ
′ ↖ 〈x := 0,σ〉 → σ

′′, 〈c′′,σ ′′〉 → σ
′

↖∗σ ′′=σ [0/x]
〈x = 0,σ [0/x]〉 → true, 〈c1,σ [0/x]〉 → σ

′

↖∗ 〈c1,σ [0/x]〉 → σ
′

〈c′,σ〉 → σ
′ ↖ 〈x := 0,σ〉 → σ

′′, 〈c1,σ
′′〉 → σ

′

↖∗σ ′′=σ [0/x]
〈c1,σ [0/x]〉 → σ

′

Since both goals reduce to the same goal 〈c1,σ [0/x]〉→ σ ′, the two commands c and
c′ are equivalent.

Using the denotational semantics, we have

C JcKσ = C
q

c′′
y∗

(C Jx := 0Kσ)

= C
q

c′′
y∗

(σ [0/x])

= C
q

c′′
y
(σ [0/x])

= (λσ
′. (B Jx = 0Kσ

′ → C Jc1Kσ
′ , C Jc2Kσ

′))(σ [0/x])

= B Jx = 0Kσ [0/x] → C Jc1Kσ [0/x] , C Jc2Kσ [0/x]

= true → C Jc1Kσ [0/x] , C Jc2Kσ [0/x]

= C Jc1Kσ [0/x]

C
q

c′
y

σ = C Jc1K∗ (C Jx := 0Kσ)

= C Jc1K∗ (σ [0/x])

= C Jc1K(σ [0/x]).

6.4 Let c′ def
= if b then c else skip. We have that

Γb,c ϕ σ = B JbKσ → ϕ
∗(C JcKσ) , σ

Γb,c′ ϕ σ = B JbKσ → ϕ
∗(C

q
c′

y
σ) , σ

= B JbKσ → ϕ
∗(B JbKσ → C JcKσ , C JskipKσ) , σ

= B JbKσ → ϕ
∗(B JbKσ → C JcKσ , σ) , σ

Let us show that Γb,c = Γb,c′ .
If B JbKσ = false, then Γb,c ϕ σ = σ = Γb,c ϕ σ .
If B JbKσ = true, then
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Γb,c ϕ σ = ϕ
∗(C JcKσ)

Γb,c′ ϕ σ = ϕ
∗(B JbKσ → C JcKσ , σ)

= ϕ
∗(C JcKσ)

6.5 We have already seen in Example 6.6 that C Jwhile true do skipK = λσ . ⊥Σ⊥ .
For the second command we have C Jwhile true do x := x+1K = fix Γ , where

Γ ϕ σ = B JtrueKσ → ϕ
∗(C Jx := x+1Kσ) , σ

= true → ϕ
∗(C Jx := x+1Kσ) , σ

= ϕ
∗(C Jx := x+1Kσ)

= ϕ
∗(σ [σ(x)+1/x])

= ϕ(σ [σ(x)+1/x])

Let us compute the first elements of the chain {ϕn}n∈N with ϕn = Γ n ⊥Σ→Σ⊥ :

ϕ0 σ = ⊥Σ⊥

ϕ1 σ = Γ ϕ0 σ

= ϕ0(σ [σ(x)+1/x])

= (λσ . ⊥Σ⊥)(σ [σ(x)+1/x])

= ⊥Σ⊥

Since ϕ1 =ϕ0 we have reached the fixpoint and have C Jwhile true do x := x+1K=
λσ . ⊥Σ⊥ .

6.6 We have immediately C Jx := 0Kσ = σ [0/x].
Moreover, we have C Jwhile x 6= 0 do x := 0K = fix Γ , where

Γ ϕ σ = B Jx 6= 0Kσ → ϕ
∗(C Jx := 0Kσ) , σ

= σ(x) 6= 0 → ϕ
∗(σ [0/x]) , σ

= σ(x) 6= 0 → ϕ(σ [0/x]) , σ

Let us compute the first elements of the chain {ϕn}n∈N with ϕn = Γ n ⊥Σ→Σ⊥ :
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ϕ0 σ = ⊥Σ⊥

ϕ1 σ = Γ ϕ0 σ

= σ(x) 6= 0 → ϕ0(σ [0/x]) , σ

= σ(x) 6= 0 → ⊥Σ⊥ , σ

ϕ2 σ = Γ ϕ1 σ

= σ(x) 6= 0 → ϕ1(σ [0/x]) , σ

= σ(x) 6= 0 → (λσ
′. σ

′(x) 6= 0 → ⊥Σ⊥ , σ
′)(σ [0/x]) , σ

= σ(x) 6= 0 → (σ [0/x](x) 6= 0 → ⊥Σ⊥ , σ [0/x]) , σ

= σ(x) 6= 0 → (false → ⊥Σ⊥ , σ [0/x]) , σ

= σ(x) 6= 0 → σ [0/x] , σ

= σ(x) 6= 0 → σ [0/x] , σ [0/x]

= σ [0/x]

ϕ3 σ = Γ ϕ2 σ

= σ(x) 6= 0 → ϕ2(σ [0/x]) , σ

= σ(x) 6= 0 → (λσ
′. σ

′[0/x])(σ [0/x]) , σ

= σ(x) 6= 0 → σ [0/x][0/x] , σ

= σ(x) 6= 0 → σ [0/x] , σ [0/x]

= σ [0/x]

Note in fact that, when σ(x) 6= 0 is false, then σ = σ [0/x].
Since ϕ3 =ϕ2 we have reached the fixpoint and have C Jwhile x 6= 0 do x := 0K=

λσ . σ [0/x].
We conclude by observing that since ϕ2 is a maximal element of its domain, it

must already be the lub of the chain, namely the fixpoint. Thus it is not necessary to
compute ϕ3.

6.10

1.

〈c,σ〉 → σ
′ 〈b,σ ′〉 → false

(do)
〈do c undoif b,σ〉 → σ

′
〈c,σ〉 → σ

′ 〈b,σ ′〉 → true
(undo)

〈do c undoif b,σ〉 → σ

2.
C Jdo c undoif bKσ

def
= B JbK∗ (C JcKσ) →∗ σ , C JcKσ

where B JbK∗ : Σ⊥→ B⊥ denotes the lifted version of the interpretation functions
for boolean expressions (as c can diverge) and t→∗ t0, t1 denotes the lifted version
of the conditional operator, such that it returns ⊥Σ⊥ when t is ⊥B⊥ .

3. First we extend the proof of correctness by rule induction. We recall that

P
(
〈c,σ〉 → σ

′) def
= C JcKσ = σ

′



Solutions 369

do: we assume that 〈b,σ ′〉→ false and P(〈c,σ〉 → σ ′) def
= C JcKσ = σ ′. We

need to prove that

P
(
〈do c undoif b,σ〉 → σ

′) def
= C Jdo c undoif bKσ = σ

′

From 〈b,σ ′〉 → false it follows B JbK(σ ′) = false. We have

C Jdo c undoif bKσ
def
= B JbK∗ (C JcKσ) →∗ σ , C JcKσ

= B JbK∗σ
′ →∗ σ , σ

′

= B JbKσ
′ →∗ σ , σ

′

= false →∗ σ , σ
′

= false → σ , σ
′

= σ
′

undo: we assume that 〈b,σ ′〉 → true and P(〈c,σ〉 → σ ′) def
= C JcKσ = σ ′. We

need to prove that

P(〈do c undoif b,σ〉 → σ)
def
= C Jdo c undoif bKσ = σ

From 〈b,σ ′〉 → true it follows that B JbK(σ ′) = true. We have

C Jdo c undoif bKσ
def
= B JbK∗ (C JcKσ) →∗ σ , C JcKσ

= B JbK∗σ
′ →∗ σ , σ

′

= B JbKσ
′ →∗ σ , σ

′

= true →∗ σ , σ
′

= true → σ , σ
′

= σ

Finally, we extend the proof of completeness by structural induction. We assume

P(c) def
= ∀σ ,σ ′. C JcKσ = σ

′⇒ 〈c,σ〉 → σ
′

and we want to prove that

P(do c undoif b) def
= ∀σ ,σ ′.C Jdo c undoif bKσ =σ

′⇒〈do c undoif b,σ〉→σ
′

Let us take σ and σ ′ such that C Jdo c undoif bKσ = σ ′. We need to prove
that 〈do c undoif b,σ〉 → σ ′. Since C Jdo c undoif bKσ = σ ′ it must be that
C JcKσ = σ ′′ for some σ ′′ 6=⊥Σ⊥ and by the inductive hypothesis 〈c,σ〉 → σ ′′.
We distinguish two cases.

B JbKσ ′′ = false: then σ ′ = σ ′′ and 〈b,σ ′′〉 → false. Since 〈c,σ〉 → σ ′′ we
apply rule (do) to derive 〈do c undoif b,σ〉 → σ ′′ = σ ′.
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B JbKσ ′′ = true: then σ ′=σ and 〈b,σ ′′〉→ true. Since 〈c,σ〉→σ ′′ we apply
rule (undo) to conclude that 〈do c undoif b,σ〉 → σ .

Problems of Chapter 7

7.2

rec f
τ2→int

. λ x
τ∗int

. if snd( x
τ∗int

)

int

then 1
int

else f
τ2→int

( fst(x)
int→τ1

, ( fst(x)
τ=int→τ1

snd(x)
int

)

τ1

)

τ2=(int→τ1)∗τ1

int

(τ∗int)→int

From which we must have τ2→ int = (τ ∗ int)→ int, i.e., τ2 = (τ ∗ int). But since
τ2 = (int → τ1)∗ τ1, it must be that τ = (int → τ1) and int = τ1. Summing up, we
have τ1 = int, τ = int→ int and τ2 = (int→ int)∗ int and the principal type of t is
((int→ int)∗ int)→ int.

7.3

1. We let τ = int ∗(int ∗(int ∗ int)) be the type of a list of integers with three elements
(the last element of type int is 0 and it marks the end of the list) and we define

t def
= λ `

τ

. fst(snd( snd(`
τ

)

int∗(int∗int)

)

int∗int

)

int

τ→int

Let L = (n1,(n2,(n3,0))) : τ be a generic list of integers with three elements. Now
we check that (t L)→ n3:

(t L)→ c ↖ t→ λx. t ′, t ′[L/x]→ c
↖∗x=`, t ′=fst(snd(snd(`))) fst(snd(snd(L)))→ c

↖ snd(snd(L))→ (t1, t2), t1→ c
↖ snd(L)→ (t3, t4), t4→ (t1, t2), t1→ c
↖ L→ (t5, t6), t6→ (t3, t4), t4→ (t1, t2), t1→ c

↖t5=n1, t6=(n2,(n3,0)) (n2,(n3,0))→ (t3, t4), t4→ (t1, t2), t1→ c
↖t3=n2, t4=(n3,0) (n3,0)→ (t1, t2), t1→ c
↖t1=n3, t2=0 n3→ c

↖c=n3
�
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2. The answer is negative. In fact a generic list of k integers has a type that depends
on the length of the list itself and we do not have polymorphic functions in HOFL.
The natural candidate

t def
= rec f . λx. if snd(x) then fst(x) else f (snd(x))

is not typable, in fact we have

rec f
int→τ

. λ x
τ∗int

. if snd( x
τ∗int

)

int

then fst(x)
τ

else f
int→τ

(snd(x))
int

τ

τ

(τ∗int)→τ

From which we must have int→ τ = (τ ∗ int)→ τ , i.e., int = (τ ∗ int), which is
not possible.

7.4

1. We have

t1
def
= λ x

int

. λ y
τ1

. x
int

+ 3
int

int

τ1→int

int→τ1→int

t2
def
= λ z

int∗τ2

. fst( z
int∗τ2

)

int

+ 3
int

int

(int∗τ2)→int

2. Assume τ1 = τ2 = τ with c : τ in canonical form. We compute the canonical forms
of ((t1 1) c) and (t2 (1,c)) as follows:

((t1 1) c)→ c1 ↖ (t1 1)→ λy′. t ′, t ′[c/y′ ]→ c1
↖ t1→ λx′. t ′′, t ′′[1/x′ ]→ λy′. t ′, t ′[c/y′ ]→ c1

↖x′=x, t ′′=λy. x+3 λy. 1+3→ λy′. t ′, t ′[c/y′ ]→ c1
↖y′=y, t ′=1+3 1+3→ c1
↖c1=n1+n2

1→ n1, 3→ n2

↖∗n1=1, n2=3 �

Thus c1 = n1+n2 = 1+3 = 4 is the canonical form of ((t1 1) c).

(t2 (1,c))→ c2 ↖ t2→ λ z′. t ′, t ′[(1,c)/z′ ]→ c2
↖z′=z, t ′=fst(z)+3 fst((1,c))+3→ c2

↖c2=n1+n2
fst((1,c))→ n1, 3→ n2

↖ (1,c)→ (t ′′, t ′′′), t ′′→ n1, 3→ n2
↖t ′′=1, t ′′′=c 1→ n1, 3→ n2
↖∗n1=1, n2=3 �

Thus c2 = n1+n2 = 1+3 = 4 is the canonical form also of (t2 (1,c)).
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7.5 We find the principal type of map:

map def
= λ f

τ1→τ

. λ x
τ1∗τ1

. (( f
τ1→τ

fst( x
τ1∗τ2

)

τ1

)

τ

,( f
τ1→τ

snd( x
τ1∗τ2

)

τ2=τ1

)

τ

)

τ∗τ
(τ1∗τ1)→(τ,τ)

(τ1→τ)→(τ1∗τ1)→(τ ,τ)

We now compute the canonical form of the term ((map t) (1,2)) where t def
= λx. 2×x:

((map t) (1,2))→ c ↖ (map t)→ λy.t ′, t ′[(1,2)/y]→ c
↖ map→ λg.t ′′, t ′′[t/g]→ λy.t ′, t ′[(1,2)/y]→ c

↖g= f , t ′′=... λx. ((t fst(x)),(t snd(x)))→ λy.t ′,
t ′[(1,2)/y]→ c

↖y=x, t ′=... ((t fst((1,2))),(t snd((1,2))))→ c
↖c=((t fst((1,2))),(t snd((1,2)))) �

So the canonical form is c = (((λx. 2× x) fst((1,2))),((λx. 2× x) snd((1,2)))).

Problems of Chapter 8

8.4 We prove the monotonicity of the lifting operator (·)∗ : [D→ E]→ [D⊥→ E].
Let us take two continuous functions f ,g ∈ [D→ E] such that f vD→E g. We want
to prove that f ∗ vD⊥→E g∗. So we need to prove that for any x ∈ D⊥ we have
f ∗(x)vE g∗(x). We have two possibilities:

• if x =⊥D⊥ , then f ∗(⊥D⊥) =⊥E = g∗(⊥D⊥);
• if x = bdc for some d ∈ D, we have f ∗(bdc) = f (d)v g(d) = g∗(bdc), because

f vD→E g by hypothesis.

8.5 We prove that the function apply : [D→ E]×D→ E is monotone. Let us take
two continuous functions f1, f2 ∈ [D→ E] and two elements d1,d2 ∈ D such that
( f1,d1) v[D→E]×D ( f2,d2). We want to prove that apply ( f1,d1) vE apply ( f2,d2).
By definition of the cartesian product domain, ( f1,d1)v[D→E]×D ( f2,d2) means that
f1 v[D→E] f2 and d1 vD d2. Then, we have

apply ( f1,d1) = f1(d1) (by definition of apply)
vE f1(d2) (by monotonicity of f1)
vE f2(d2) (because f1 v[D→E] f2)
= apply ( f2,d2) (by definition of apply)
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8.6 Let F f = {d | d = f (d)}⊆D be the set of fixpoints of f : D→D. It is immediate
that F f is a PO, because it is a subset of the partial order D from which it inherits
the order relation. It remains to be proved that it is complete. Take a chain {di}i∈N
in F f . Since F f ⊆ D and D is a CPO, the chain {di}i∈N has a limit d =

⊔
i∈N di in D.

We want to prove that d ∈ F f , i.e., that d = f (d). We note that for any i ∈N we have
di = f (di), because di ∈ F f . Since f is continuous, we have

f (d) = f

(⊔
i∈N

di

)
=
⊔
i∈N

f (di) =
⊔
i∈N

di = d.

8.8 We divide the proof in two parts: first we show that f v g implies f � g and
then that f � g implies f v g.

For the first implication, suppose that f v g. Given any two elements d1,d2 ∈ D
such that d1vD d2 we want to prove that f (d1)vE g(d2). From the monotonicity of f
we have f (d1)vE f (d2) and by the hypothesis f v g it follows that f (d2)vE g(d2);
thus, f (d1)vE f (d2)vE g(d2).

For the second implication, suppose f � g. We want to prove that for any element
d ∈ D we have f (d)vE g(d). But this is immediate, because by reflexivity we have
d vD d and thus f (d)vE g(d) by definition of �.

Problems of Chapter 9

9.1 We show that t is typable:

t def
= rec f

int→int

. λ x
int

. if x
int

then 0
int

else ( f
int→int

( x
int

)

int

× f
int→int

( x
int

)

int

int

int

)

int→int

int→int

So we conclude t : int→ int.
The canonical form is readily obtained by unfolding once the recursive definition:

t→ c ↖ λx. if x then 0 else (t(x)× t(x))→ c
↖c=λx. if x then 0 else (t(x)×t(x)) �

Finally, the denotational semantics is computed as follows:
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JtKρ = fix λd f . Jλx. if x then 0 else ( f (x)× f (x))Kρ[d f / f ]

= fix λd f . bλdx. Jif x then 0 else ( f (x)× f (x))Kρ[d f / f ,
dx /x]︸ ︷︷ ︸

ρ ′

c

= fix λd f . bλdx. Cond(JxKρ
′,J0Kρ

′,J f (x)× f (x)Kρ
′)c

= fix λd f . bλdx. Cond(dx,b0c,J f (x)Kρ
′×⊥J f (x)Kρ

′)c
= fix λd f . bλdx. Cond(dx,b0c,(let ϕ ⇐ d f . ϕ(dx))×⊥(let ϕ ⇐ d f . ϕ(dx)))c

because

J f (x)Kρ
′ = let ϕ ⇐ J f Kρ

′. ϕ(JxKρ
′)

= let ϕ ⇐ d f . ϕ(dx)

Let us compute the fixpoint by successive approximations:

f0 = ⊥(Vint→int )⊥
f1 = bλdx. Cond(dx,b0c,(let ϕ ⇐ f0. ϕ(dx))×⊥(let ϕ ⇐ f0. ϕ(dx)))c

= bλdx. Cond(dx,b0c,(⊥(Vint )⊥)×⊥(⊥(Vint )⊥))c
= bλdx. Cond(dx,b0c,⊥(Vint )⊥)c

f2 = bλdx. Cond(dx,b0c,(let ϕ ⇐ f1. ϕ(dx))×⊥(let ϕ ⇐ f1. ϕ(dx)))c
= bλdx. Cond(dx,b0c,(Cond(dx,b0c,⊥(Vint )⊥))×⊥(Cond(dx,b0c,⊥(Vint )⊥)))c
= bλdx. Cond(dx,b0c,(⊥(Vint )⊥)×⊥(⊥(Vint )⊥))c
= bλdx. Cond(dx,b0c,⊥(Vint )⊥)c
= f1

So we have reached the fixpoint and

JtKρ = bλdx. Cond(dx,b0c,⊥(Vint )⊥)c

9.9

1. Assume t1 : τ . We have
t2

def
= λ x

τ1

. ( t1
τ1→τ2

x
τ1

)

τ2

τ1→τ2

Unless τ = τ1→ τ2 the pre-term t2 is not typable.
2. Let us compute the denotational semantics of t2:
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Jt2Kρ =
⌊

λdx. Jt1 xKρ[dx/x]
⌋

=
⌊

λdx. let ϕ ⇐ Jt1Kρ[dx/x]. ϕ(JxKρ[dx/x])
⌋

=
⌊

λdx. let ϕ ⇐ Jt1Kρ[dx/x]. ϕ(dx)
⌋

Suppose x 6∈ fv(t1). Then we have ∀y ∈ fv(t1). ρ(y) = ρ[dx/x](y) and thus by
Theorem 9.5 we have Jt1Kρ[dx/x] = Jt1Kρ .
Now, if Jt1Kρ =⊥(Vτ )⊥ , then Jt2Kρ =

⌊
λdx. ⊥(Vτ2 )⊥

⌋
6= Jt1Kρ .

Otherwise, it must be that Jt1Kρ = b f c for some f ∈ Vτ1→τ2 and hence Jt2Kρ =
bλdx. f dxc= b f c= Jt1Kρ .

9.10

1. Let us compute the principal types for t1 and t2:

t1
def
= λ x

τ1

. rec y
int

. y
int

+ 1
int

int

int

τ1→int

t2
def
= rec y

τ2→int

. λ x
τ2

. ( y
τ2→int

x
τ2

)

int

+ 2
int

int

τ2→int

τ2→int

Therefore t1 and t2 have the same type if and only if τ1 = τ2.
2. Let us compute the denotational semantics of t1:

Jt1Kρ = bλdx. Jrec y. y+1Kρ[dx/x]c
= bλdx. fix λdy. Jy+1Kρ[dx/x,

dy /y]c
= bλdx. fix λdy. JyKρ[dx/x,

dy /y]+⊥J1Kρ[dx/x,
dy /y]c

= bλdx. fix λdy. dy+⊥b1cc

We need to compute the fixpoint fix λdy. dy+⊥b1c:

d0 = ⊥(Vint )⊥
d1 = d0+⊥b1c=⊥(Vint )⊥ = d0

From which it follows

Jt1Kρ = bλdx. ⊥(Vint )⊥c= b⊥(Vτ→int )c

Let us now turn our attention to t2:
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Jt2Kρ = fix λdy. Jλx. (y x)+2Kρ[dy/y]

= fix λdy. bλdx. J(y x)+2Kρ[dy/y,
dx /x]︸ ︷︷ ︸

ρ ′

c

= fix λdy. bλdx. Jy xKρ
′+⊥J2Kρ

′c
= fix λdy. bλdx. (let ϕ ⇐ JyKρ

′. ϕ(JxKρ
′))+⊥b2cc

= fix λdy. bλdx. (let ϕ ⇐ dy. ϕ(dx))+⊥b2cc

Let us compute the fixpoint:

f0 = ⊥(Vτ→int )⊥
f1 = bλdx. (let ϕ ⇐ f0. ϕ(dx))+⊥b2cc

= bλdx. (⊥(Vint )⊥)+⊥b2cc
= bλdx. ⊥(Vint )⊥c
= b⊥(Vτ→int )c

f2 = bλdx. (let ϕ ⇐ f1. ϕ(dx))+⊥b2cc
= bλdx. (⊥(Vτ→int )(dx))+⊥b2cc
= bλdx. (⊥(Vint )⊥)+⊥b2cc
= bλdx. ⊥(Vint )⊥c
= b⊥(Vτ→int )c
= f1

So we have computed the fixpoint and got

Jt2Kρ = b⊥(Vτ→int )c= Jt1Kρ.

9.15 Let us try to change the denotational semantics of the conditional construct of
HOFL by defining

Jif t then t0 else t1Kρ
def
= Cond′(JtKρ,Jt0Kρ,Jt1Kρ)

where

Cond′(x,d0,d1) =

{
d0 if x = bnc for some n ∈ Z
d1 if x =⊥(Vint )⊥

The problem is that the newly defined operation Cond′ is not monotone (and thus
not continuous)! To see this, recall that ⊥(Vint )⊥ v b1c and take any d0,d1: we should
have Cond′(⊥(Vint )⊥ ,d0,d1) v Cond′(b1c,d0,d1). However, if we take d0,d1 such
that d1 6v d0 it follows that

Cond′(⊥(Vint )⊥ ,d0,d1) = d1 6v d0 =Cond′(b1c,d0,d1)

For a concrete example, take d1 = b1c and d0 = b0c.
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At the level of HOFL syntax, the previous cases arise when considering, e.g., the
terms t1

def
= if (rec x. x) then 0 else 1 and t2

def
= if 1 then 0 else 1, as

Jt1Kρ = b1c 6v b0c= Jt2Kρ

As a consequence, typable terms such as

t def
= λx. if x then 0 else 1 : int→ int

would not be assigned a semantics in (Vint→int)⊥ because the function JtKρ would
not be continuous.

Problems of Chapter 10

10.1 Let us check the type of t1 and t2:

rec f
τ2→τ1

. λ x
τ2

. ((λ y
τ1

. 1
int

)

τ1→int

( f
τ2→τ1

x
τ2

)

τ1

)

int

τ2→int

τ2→τ1=τ2→int

λ x
τ

. 1
int

τ→int

So it must be that τ1 = int and the terms have the same type if τ2 = τ .
The denotational semantics of t1 requires the computation of the fixpoint:

Jt1Kρ = fix λd f . Jλx. ((λy. 1) ( f x))Kρ[d f / f ]

= fix λd f . bλdx. J((λy. 1) ( f x))Kρ[d f / f ,
dx /x]︸ ︷︷ ︸

ρ ′

c

= fix λd f . bλdx. (let ϕ ⇐ Jλy. 1Kρ
′. ϕ(J f xKρ

′))c
= fix λd f . bλdx. (let ϕ ⇐ bλdy. b1cc. (ϕ(letϕ

′⇐ d f . ϕ
′(dx))))c

= fix λd f . bλdx. ((λdy. b1c)(letϕ
′⇐ d f . ϕ

′(dx)))c
= fix λd f . bλdx. b1cc

f0 = ⊥(Vτ→int )⊥
f1 = bλdx. b1cc

We can stop the calculation of the fixpoint, as we have reached a maximal element.
Thus Jt1Kρ = bλdx. b1cc. For t2 we have directly
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Jt2Kρ = bλdx. J1Kρ[dx/x]c
= bλdx. b1cc
= Jt1Kρ

To show that the canonical forms are different, we note that t2 is already in
canonical form, while for t1 we have

t1→ c1 ↖ λx. ((λy. 1) (t1 x))→ c1
↖c1=λx. ((λy. 1) (t1 x)) �

10.2

1. We compute the denotational semantics of map and of t def
= (map λ z. z):

JmapKρ = bλd f . Jλx. (( f fst(x)),( f snd(x)))Kρ[d f / f ]c
= bλd f . bλdx. J(( f fst(x)),( f snd(x)))Kρ[d f / f ,

dx /x]︸ ︷︷ ︸
ρ ′

cc

= bλd f . bλdx. b(J( f fst(x))Kρ
′,J( f snd(x))Kρ

′)ccc
= bλd f . bλdx. b((let ϕ1⇐ J f Kρ

′. ϕ1(Jfst(x)Kρ
′)),

(let ϕ2⇐ J f Kρ
′. ϕ2(Jsnd(x)Kρ

′)))ccc
= bλd f . bλdx. b((let ϕ1⇐ d f . ϕ1(let d1⇐ JxKρ

′. π1 d1)),

(let ϕ2⇐ d f . ϕ2(let d2⇐ JxKρ
′. π2 d2)))ccc

= bλd f . bλdx. b((letϕ1⇐ d f . ϕ1(let d1⇐ dx. π1 d1)),

(let ϕ2⇐ d f . ϕ2(let d2⇐ dx. π2 d2)))ccc
JtKρ = let ϕ ⇐ JmapKρ. ϕ(Jλ z. zKρ)

= let ϕ ⇐ JmapKρ. ϕ(bλdz. JzKρ[dz/z]c)
= let ϕ ⇐ JmapKρ. ϕ(bλdz. dzc)
= bλdx. b((let ϕ1⇐ bλdz. dzc. ϕ1(let d1⇐ dx. π1 d1)),

(let ϕ2⇐ bλdz. dzc. ϕ2(let d2⇐ dx. π2 d2)))cc
= bλdx. b(((λdz. dz)(let d1⇐ dx. π1 d1)),

((λdz. dz)(let d2⇐ dx. π2 d2)))cc
= bλdx. b((let d1⇐ dx. π1 d1),(let d2⇐ dx. π2 d2))cc

2. It suffices to take t1
def
= 1+1 and t2

def
= 2. It can readily be checked that

J(t1, t2)Kρ = b(b2c,b2c)c= J(t2, t1)Kρ.

Letting t0
def
= (map λ z. z), we have that the terms (t0 (t1, t2)) and (t0 (t2, t1)) have

the same denotational semantics:
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Jt0 (t1, t2)Kρ = let ϕ ⇐ Jt0K . ϕ(J(t1, t2)Kρ)

= let ϕ ⇐ Jt0K . ϕ(b(b2c,b2c)c)
= b((let d1⇐ b(b2c,b2c)c. π1 d1),(let d2⇐ b(b2c,b2c)c. π2 d2))c
= b((π1 (b2c,b2c)),(π2 (b2c,b2c)))c
= b(b2c,b2c)c

Jt0 (t2, t1)Kρ = let ϕ ⇐ Jt0K . ϕ(J(t2, t1)Kρ)

= let ϕ ⇐ Jt0K . ϕ(b(b2c,b2c)c)
= Jt0 (t1, t2)Kρ

The same result can be obtained by observing that (t0 (t1, t2)) = (t0 y)[(t1,t2)/y]

and (t0 (t2, t1)) = (t0 y)[(t2,t1)/y]. Then, by compositionality we have

Jt0 (t1, t2)Kρ =
r
(t0 y)[(t1,t2)/y]

z
ρ

= J(t0 y)Kρ[J(t1,t2)Kρ/y]

= J(t0 y)Kρ[b(b2c,b2c)c/y]

= J(t0 y)Kρ[J(t2,t1)Kρ/y]

=
r
(t0 y)[(t2,t1)/y]

z
ρ

= Jt0 (t2, t1)Kρ

We conclude by showing that the terms (t0 (t1, t2)) and (t0 (t2, t1)) have different
canonical forms:

(t0 (t1, t2))→ c1 ↖ t0→ λx′.t, t[(t1,t2)/x′ ]→ c1

↖ map→ λ f ′.t ′, t ′[λ z. z/ f ′ ]→ λx′.t, t[(t1,t2)/x′ ]→ c1
↖ f ′= f ,t ′=... λx. (((λ z. z) fst(x)),((λ z. z) snd(x)))→ λx′.t,

t[(t1,t2)/x′ ]→ c1
↖x′=x,t=... (((λ z. z) fst((t1, t2))),((λ z. z) snd((t1, t2))))→ c1
↖c1=(...,...) �

(t0 (t2, t1))→ c2 ↖∗ (((λ z. z) fst((t2, t1))),((λ z. z) snd((t2, t1))))→ c2
↖c2=(...,...) �

10.11

1. We extend the proof of correctness to take into account the new rules. We recall
that the predicate to be proved is

P(t→ c) def
= ∀ρ. JtKρ = JcKρ

For the rule
t→ 0 t0→ c0 t1→ c1

if t then t0 else t1→ c0

we can assume
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P(t→ 0) def
= ∀ρ. JtKρ = J0Kρ = b0c

P(t0→ c0)
def
= ∀ρ. Jt0Kρ = Jc0Kρ

P(t1→ c1)
def
= ∀ρ. Jt1Kρ = Jc1Kρ

and we want to prove

P(if t then t0 else t1→ c0)
def
= ∀ρ. Jif t then t0 else t1Kρ = Jc0Kρ

We have

Jif t then t0 else t1Kρ = Cond(JtKρ,Jt0Kρ,Jt1Kρ) (by definition)
= Cond(b0c,Jt0Kρ,Jt1Kρ) (by inductive hypothesis)
= Jt0Kρ (by definition of Cond)
= Jc0Kρ (by inductive hypothesis)

For the other rule the proof is analogous and thus omitted.
2. As a counterexample, we can take

t def
= if 0 then 1 else rec x. x

In fact, its denotational semantics is

JtKρ =Cond(J0Kρ,J1Kρ,Jrec x. xKρ) =Cond(b0c,b1c,⊥(Vint )⊥) = b1c

and therefore t ⇓. However, t ↑, as

t→ c ↖ 0→ 0, 1→ c, rec x. x→ c′

↖ 1→ c, rec x. x→ c′

↖c=1 rec x. x→ c′

↖ x[rec x. x/x]→ c′

= rec x. x→ c′

↖ ···

10.13 According to the operational semantics we have

rec x. t→ c↖ t[rec x. t/x]→ c

= t→ c

because by hypothesis x 6∈ fv(t). So we conclude that either both terms have the same
canonical form or they do not have any canonical form.

According to the denotational semantics we have

Jrec x. tKρ = fix λdx. JtKρ[dx/x]

= fix λdx. JtKρ
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When we compute the fixpoint, assuming t : τ , we get

d0 = ⊥(Vτ )⊥

d1 = (λdx. JtKρ) d0 = JtKρ[d0/dx ] = JtKρ

d2 = (λdx. JtKρ) d1 = JtKρ[d1/dx ] = JtKρ = d1

So we have reached the fixpoint and have Jrec x. tKρ = JtKρ .
Alternatively, we could have computed the semantics as follows:

Jrec x. tKρ = JtKρ[Jrec x. tKρ/x] (by definition)
= Jt[rec x. t/x]Kρ (by Substitution Lemma)
= JtKρ (because x 6∈ fv(t))

10.14

1. By Theorem 10.1 (Correctness) we have Jt0Kρ = Jc0Kρ . Hence
q

t ′1[
t0/x]

y
ρ =

q
t ′1

y
ρ[Jt0Kρ/x] =

q
t ′1

y
ρ[Jc0Kρ/x] =

q
t ′1[

c0/x]
y

ρ

2. If Jt ′1[
t0/x]Kρ = Jt ′1[

c0/x]Kρ = ⊥Z⊥ , then we have that t ′1[
t0/x] ↑ and t ′1[

c0/x] ↑,
because the operational semantics agrees on convergence with the denotational
semantics.
If Jt ′1[

t0/x]Kρ = Jt ′1[
c0/x]Kρ 6= ⊥Z⊥ , there exists n ∈ Z such that Jt ′1[

t0/x]Kρ =
Jt ′1[

c0/x]Kρ = bnc. Then, since t ′1[
t0/x] and t ′1[

c0/x] are closed, by Theorem 10.4,
we have t ′1[

t0/x]→ n and t ′1[
c0/x]→ n.

3. Suppose that (t1 t0)→ c in the eager semantics. Then it must be the case that
t1→ λx. t ′1 for some suitable x and t ′1, and that t ′1[c0/x]→ c (we know that t0→ c0
by the initial hypothesis). Since c : int it must be that c = n for some integer n.
Then, by the previous point we know that t ′1[

t0/x]→ n because t ′1[
c0/x]→ n. We

conclude that (t1 t0)→ c in the lazy semantics by exploiting the (lazy) rule for
function application.

4. As a simple counterexample, we can take, e.g., t1 = λx. ((λy. x) (rec z. z)) with
y 6∈ fv(t0). In fact, in the lazy semantics, we have

(t1 t0)→ c ↖ t1→ λx′. t ′1, t ′1[
t0/x′ ]→ c

↖x′=x, t ′1=((λy. x) (rec z. z)) ((λy. t0) (rec z. z))→ c
↖ (λy. t0)→ λy′. t2, t2[(rec z. z)/y′ ]→ c

↖y′=y, t2=t0 t0[(rec z. z)/y]→ c
= t0→ c

↖c=c0
�

Whereas in the eager semantics, we have
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(t1 t0)→ c ↖ t1→ λx′. t ′1, t0→ c′, t ′1[
c′/x′ ]→ c

↖x′=x, t ′1=((λy. x) (rec z. z)) t0→ c′, ((λy. c′) (rec z. z))→ c
↖c′=c0

((λy. c0) (rec z. z))→ c
↖ (λy. c0)→ λy′. t2, rec z. z→ c′′, t2[c

′′
/y′ ]→ c

↖y′=y, t2=t0 rec z. z→ c′′, t0[c
′′
/y]→ c

↖ rec z. z→ c′′, t0[c
′′
/y]→ c

↖ ·· ·

5. Let x, t0 : τ0 and y : τ and assume t0 6= c0. As a last counterexample, let us
take t ′1 = λy. x (and t1 = λx. t ′1), with t ′1 : τ → τ0. We have immediately that
t ′1[

t0/x] = λy. t0 and t ′1[
c0/x] = λy. c0 are already in canonical form and they are

different. Moreover, (t1 t0)→ λy. t0 in the lazy semantics, but (t1 t0)→ λy. c0 in
the eager semantics.

Problems of Chapter 11

11.3 Let us take the relation

R def
= {(Bn

k ,B
1
i1 | · · · | B

1
in) |

n

∑
j=1

i j = k}

We show that R is a strong bisimulation.

• If k = 0 we have that (Bn
0,B

1
i1 | · · · | B

1
in) ∈ R iff ∀ j ∈ [1,n]. i j = 0. Then there

is a unique transition leaving Bn
0, namely Bn

0
in−→ Bn

1, while we have n different
transitions leaving B1

0 | · · · | B1
0, one for each buffer. The states reached are all

those processes B1
i1 | · · · | B

1
in such that ∑

n
j=1 i j = 1. In fact, we have that Bn

1 is
related via R to any such process.

• If k = n we have that (Bn
n,B

1
i1 | · · · | B

1
in) ∈ R iff ∀ j ∈ [1,n]. i j = 1. Then there is

a unique transition leaving Bn
n, namely Bn

n
out−→ Bn

n−1, while we have n different
transitions leaving B1

1 | · · · | B1
1, one for each buffer. The states reached are all

those processes B1
i1 | · · · | B

1
in such that ∑

n
j=1 i j = n−1. In fact, we have that Bn

n−1
is related via R to any such process.

• If 0 < k < n we have that (Bn
k ,B

1
i1 | · · · | B

1
in) ∈ R iff ∑

n
j=1 i j = k. Then there are

two transitions leaving Bn
k , namely Bn

k
in−→ Bn

k+1 and Bn
k

out−→ Bn
k−1, while we have

n− k different in-transitions leaving B1
i1 | · · · | B

1
in , one for each empty buffer, and

k different out-transitions, one for each full buffer. In the first case, the states
reached are all those processes B1

i1 | · · · | B
1
in such that ∑

n
j=1 i j = k+1, because one

empty buffer has become full, and we have that Bn
k+1 is related by R to any such

process. In the second case, the states reached are all those processes B1
i1 | · · · | B

1
in

such that ∑
n
j=1 i j = k−1, because one of the full buffers has become empty, and

we have that Bn
k−1 is related by R to any such process.
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11.6

Conditionals: We encode the conditional statement by testing in input the value
stored in x and setting the continuation to p1 only when this value is
i (in all other cases, the continuation is p2):

xr1.p2 + ... + xri−1.p2 +
xri.p1 +
xri+1.p2 + ... + xrn.p2

Iteration: Let φ be the permutation that switches d and done. By using the
recursive process, we let

rec W. xr1.Done + ... + xri−1.Done+
xri.(p[φ ] | d.W )\d +
xri+1.Done + ... + xrn.Done

in the case the value i can be read from x, activates the continuation

(p[φ ] | d.rec W. (...))\d

that executes p and (if and) when it terminates activates another
instance of the recursive process. In all other cases it activates the
termination process Done.

Concurrency: Let φi be the permutation that switches di and done. We encode the
concurrent execution of c1 and c2 as

( p1[φ1] | (p2[φ2]) | d1.d2.Done )\d1\d2

Note that we can use the simpler process

d1.d2.Done

to wait for the termination of p1[φ1] and p2[φ2] instead of the more
complex process

d1.d2.Done+d2.d1.Done

because the termination message cannot be released anyway until
both p1 and p2 have terminated.

11.7 We show that strong bisimilarity is a congruence w.r.t. sum. Formally, we want
to prove that for any CCS processes p1, p2,q1,q2 we have that

p1 ' q1∧ p2 ' q2 implies p1 + p2 ' q1 +q2

Let us assume the premise p1 ' q1∧ p2 ' q2; we want to prove that p1 + p2 '
q1+q2. Since p1 ' q1, there exists a strong bisimulation R1 such that p1 R1 q1. Since
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p2 ' q2, there exists a strong bisimulation R2 such that p2 R2 q2. We want to find a
relation R such that

1. p1 + p2 R q1 +q2;
2. R is a strong bisimulation (i.e., R⊆Φ(R)).

Let us define R as follows and then prove that it is a strong bisimulation:

R def
= {(p1 + p2,q1 +q2)}∪R1∪R2

Obviously, we have p1 + p2 R q1 +q2, by definition of R. For the second point, we
need to take a pair in R and prove that it satisfies the definition of bisimulation. Let
us consider the various cases:

• for the pairs in R1 and R2 the proof is trivial, since R1 and R2 are bisimulations
themselves and they are included in R.

• Take (p1 + p2,q1 + q2) ∈ R and take µ, p such that p1 + p2
µ−→ p. We want to

prove that there exists q with q1 +q2
µ−→ q and p R q. Since p1 + p2

µ−→ p, by the
operational semantics of CCS it must be the case that either p1

µ−→ p or p2
µ−→ p.

– If p1
µ−→ p, since p1 R1 q1, there exists q with q1

µ−→ q and p R1 q. Then q1 +

q2
µ−→ q and (p,q) ∈ R1 ⊆ R, so we are done.

– If p2
µ−→ p, since p2 R2 q2, there exists q with q2

µ−→ q and p R2 q. Then q1 +

q2
µ−→ q and (p,q) ∈ R2 ⊆ R, so we are done.

The case where p1 + p2 has to (bi)simulate a transition q1 +q2
µ−→ q is analogous

to the previous case.

11.15

1. Suppose R is a loose bisimulation. We want to show that it is a weak bisimulation.
Take any pair (p,q) ∈ R and any transition p

µ−→ p′. We want to prove that there
exists some q′ such that q

µ
=⇒ q′ and (p′,q′) ∈ R. By definition of

µ
=⇒ we have

p
µ
=⇒ p′. Since R is a loose bisimulation, there must exist some q′ such that q

µ
=⇒ q′

with (p′,q′) ∈ R and we are done. The case when p has to (bi)simulate a transition
of q is analogous and thus omitted.

2. Suppose R is a weak bisimulation. We want to show that it is a loose bisimulation.
Take any pair (p,q) ∈ R and any weak transition p

µ
=⇒ p′. (The case when q

µ
=⇒ q′

is analogous and thus omitted.) We want to prove that there exists q′ such that
q

µ
=⇒ q′ and (p′,q′) ∈ R. We first prove by mathematical induction on n that if

p τ−→ p1
τ−→ p2

τ−→ ·· · τ−→ pn

then there exists some q′ such that q τ
=⇒ q′ and (pn,q′) ∈ R.

• The base case is when n = 0, i.e., pn = p. Then we just take q′ = q.
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• For the inductive case, suppose the property holds for n; we want to prove it
for n+1. Suppose

p τ−→ p1
τ−→ ·· · τ−→ pn

τ−→ pn+1

By the inductive hypothesis, there exists q′′ such that q τ
=⇒ q′′ and (pn,q′′) ∈ R.

Since R is a weak bisimulation and pn
τ−→ pn+1, there exists some q′ such that

q′′ τ
=⇒ q′ and (pn+1,q′) ∈ R. Since q τ

=⇒ q′′ τ
=⇒ q′ we have q τ

=⇒ q′ and we are
done.

Now we distinguish two cases:

• If µ = τ , since p τ
=⇒ p′, there exist p1, ..., pn such that

p τ−→ p1
τ−→ p2

τ−→ ·· · τ−→ pn = p′

and, by the argument above, there exists q′ such that q τ
=⇒ q′ and (p′,q′) ∈ R.

• If µ 6= τ , since p
µ
=⇒ p′, there exist p′′, p′′′ such that

p τ
=⇒ p′′

µ−→ p′′′ τ
=⇒ p′

By the argument above, we can find q′′ such that q τ
=⇒ q′′ and (p′′,q′′)∈R. Since

p′′
µ−→ p′′′ and R is a weak bisimulation, there exists q′′′ such that q′′

µ
=⇒ q′′′ and

(p′′′,q′′′) ∈ R. By the argument above, we can find q′ such that q′′′ τ
=⇒ q′ and

(p′,q′) ∈ R. Since q τ
=⇒ q′′

µ
=⇒ q′′′ τ

=⇒ q′ we have q
µ
=⇒ q′ and we are done.

Problems of Chapter 12

12.1

1. Mutual exclusion: G ¬(use1∧use2).
2. Release: G (usei⇒ F reli).
3. Priority: G ((req1∧ req2)⇒ ((¬use2) U (use1∧¬use2))).
4. Absence of starvation: G (reqi⇒ F usei).

12.3 The CTL∗ formula φ
def
= AF G (p∨O q) expresses the property that along all

paths we can enter a state v such that, from that moment on, any state that does not
satisfy p is followed by a state that satisfies q. A simple branching structure where φ

is satisfied is
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•p // •p // •p // · · ·

•

??

//

��

• // • // •q // •q // · · ·

• // •p,q // • // •p,q // • // •p,q // · · ·

The formula φ is an LTL formula (as LTL formulas are tacitly quantified by the path
operator A), but it is not a CTL formula (because the linear operators G and O are
not preceded by path operators).

12.6 We let φ
def
= νx. (p∨3x)∧ (q∨2x). We have

Jνx. (p∨3x)∧ (q∨2x)Kρ
def
= FIX λS. J(p∨3x)∧ (q∨2x)Kρ[S/x]

= FIX λS. Jp∨3xKρ[S/x]∩ Jq∨2xKρ[S/x]

= FIX λS. (JpKρ[S/x]∪ J3xKρ[S/x])∩
(JqKρ[S/x]∪ J2xKρ[S/x])

= FIX λS. (ρ(p)∪{v | ∃v′ ∈ S.v→ v′})∩
(ρ(q)∪{v | ∀v′. v→ v′⇒ v′ ∈ S})

Let V = {s1,s2,s3,s4,s5,s6}. We have ρ(p) = {s6} and ρ(q) = {s3} We compute
the fixpoint by successive approximations:

S0 = V

S1 = ({s6}∪{v | ∃v′ ∈V.v→ v′})∩ ({s3}∪{v | ∀v′. v→ v′⇒ v′ ∈V})
= ({s6}∪{s1,s2,s4,s5})∩ ({s3}∪V )

= {s1,s2,s4,s5,s6}
S2 = ({s6}∪{v | ∃v′ ∈ S1.v→ v′})∩ ({s3}∪{v | ∀v′. v→ v′⇒ v′ ∈ S1})

= ({s6}∪{s1,s2,s4,s5})∩ ({s3}∪{s1,s3,s4,s5,s6})
= {s1,s4,s5,s6}

S3 = ({s6}∪{v | ∃v′ ∈ S2.v→ v′})∩ ({s3}∪{v | ∀v′. v→ v′⇒ v′ ∈ S2})
= ({s6}∪{s1,s2,s4,s5})∩ ({s3}∪{s3,s4,s5,s6})
= {s4,s5,s6}

S4 = ({s6}∪{v | ∃v′ ∈ S3.v→ v′})∩ ({s3}∪{v | ∀v′. v→ v′⇒ v′ ∈ S3})
= ({s6}∪{s1,s2,s4,s5})∩ ({s3}∪{s3,s4,s5,s6})
= {s4,s5,s6}= S3

We have reached the (greatest) fixpoint and therefore JφKρ = {s4,s5,s6}.

12.8 We let φ
def
= νx. (p∧2x). We have
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Jνx. (p∧2x)Kρ
def
= FIX λS. Jp∧2xKρ[S/x]

= FIX λS. JpKρ[S/x]∩ J2xKρ[S/x]

= FIX λS. ρ(p)∩{v | ∀v′. v→ v′⇒ v′ ∈ S}

Let V = {s1,s2,s3,s4}. We have ρ(p) = {s1,s3,s4} We compute the fixpoint by
successive approximations:

S0 = V

S1 = {s1,s3,s4}∩{v | ∀v′. v→ v′⇒ v′ ∈V}
= {s1,s3,s4}∩{s1,s2,s3,s4}
= {s1,s3,s4}

S2 = {s1,s3,s4}∩{v | ∀v′. v→ v′⇒ v′ ∈ S1}
= {s1,s3,s4}∩{s2,s3,s4}
= {s3,s4}

S3 = {s1,s3,s4}∩{v | ∀v′. v→ v′⇒ v′ ∈ S2}
= {s1,s3,s4}∩{s2,s4}
= {s4}

S4 = {s1,s3,s4}∩{v | ∀v′. v→ v′⇒ v′ ∈ S3}
= {s1,s3,s4}∩{s4}
= {s4}= S3

We have reached the (greatest) fixpoint and therefore JφKρ = {s4}.

Problems of Chapter 13

13.1 Let us consider processes such that whenever they contain an output-prefixed
subterm xy.p then p = nil. We abbreviate xy.nil as xy. Let us try to encode the
ordinary (synchronous) π-calculus in the asynchronous π-calculus. It is instructive
to proceed by successive attempts.

1. Let us define a first simple mapping A from synchronous processes to asyn-
chronous ones. The mapping is the identity except for output-prefixed processes,
which have no correspondence in the asynchronous π-calculus. Thus we let A be
(the homomorphic extension of) the function such that

A (xy.p) def
= xy |A (p)

Unfortunately, this solution is not satisfactory, because (the translated version of)
p can be executed before the message xy gets received.
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2. As a second attempt, we can try to prefix (the translated version of) p by the input
of an acknowledgment over some fixed channel a. Of course, then we must also
revise the translation of input prefixes, in order to send the acknowledgment:

A (xy.p) def
= xy | a(xk).A (p) with xk 6∈ fn(p)

A (x(z).q) def
= x(z).(aa |A (q))

Also this solution has a pitfall, because if a unique channel a is used to send all
the acknowledgments, then communications can interfere with one another.

3. As a third attempt, we enforce the sharing of a private channel a for sending the
acknowledgment. The sender creates the channel and transmits it to the receiver;
the receiver gets the private channel and uses it to receive the message, then uses
it to send the acknowledgment. Consequently, we let

A (xy.p) def
= (a)(xa | ay | a(xk).A (p)) with a,xk 6∈ fn(xy.p)

A (x(z).q) def
= x(xa).a(z)(xaxa |A (q)) with xa 6∈ fn(x(z).q)

But then it is immediate to spot that, in the encoding of the sender, the message
ay can be directly taken in input from the input prefix a(xk) that is running in
parallel, waiting for the acknowledgment.

4. As a fourth attempt, we introduce two different private channels, one for receiving
the acknowledgment and one for sending the data:

A (xy.p) def
= (a)(xa | a(xk).(xky |A (p))) with a,xk 6∈ fn(xy.p)

A (x(z).q) def
= x(xa).(k)(xak | k(z).A (q)) with xa,k 6∈ fn(x(z).q)

This solution works fine: A (p) can be executed only after a receiver has started
the interaction protocol and has sent a message on a; vice versa, A (q) can be
executed only after the actual message has been received. However the above
solution requires three asynchronous communications to implement a single
synchronous communication.

5. As a fifth attempt, we try to improve the efficiency of the fourth solution by
switching the role of the sender and the receiver in starting the protocol: it is the
receiver that sends the first message on x, expressing its intention to receive some
data. The sender waits for some receiver to start the interaction and then sends the
data:

A (xy.p) def
= x(xa).(xay |A (p)) with xa 6∈ fn(xy.p)

A (x(z).q) def
= (a)(xa | a(z).A (q)) with a 6∈ fn(x(z).q)

Nicely, this solution only requires two asynchronous communications to imple-
ment a single synchronous communication.

13.2 The polyadic π-calculus allows prefixes of the form
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π ::= τ | x(z1, ...,zn) | x〈y1, ...,yn〉

Monadic processes are just the particular instance of polyadic ones (when n = 1 for
all prefixes).

Suppose we have defined a type system that guarantees that any two input and
output prefixes that may occur on the same channel carry the same number of
arguments. We restrict ourselves to encoding only such well-typed processes. Let us
try to encode the polyadic π-calculus in the ordinary (monadic) π-calculus. As for
Problem 13.1, it is instructive to proceed by successive attempts.

1. Let us define a first simple mapping M from polyadic processes to monadic ones.
The mapping is the identity except for input- and output-prefixed processes. Thus
we let M be (the homomorphic extension of) the function such that

M (x〈y1, ...,yn〉.p) def
= xy1. · · · .xyn.M (p)

M (x(z1, ...,zn).q)
def
= x(z1). · · · .x(zn).M (q)

Unfortunately, this solution is not satisfactory, because if there are many senders
and receivers on the same channel x that run in parallel, then their sequence of
interactions can be mixed.

2. As a second attempt, we consider the possibility to exchange a private name in
the first communication and then to use this private name to send the sequence of
arguments. We modify the definition of M accordingly:

M (x〈y1, ...,yn〉.p) def
= (c)xc.cy1. · · · .cyn.M (p)

M (x(z1, ...,zn).q)
def
= x(xc).xc(z1). · · · .xc(zn).M (q)

with c 6∈ fn(x〈y1, ...,yn〉.p) and xc 6∈ fn(q)∪{z1, ...,zn}.

13.3 Let us consider the following syntax for HOπ , the Higher-Order π-calculus:

P ::= nil | π.P | P|Q | (y)P | Y

π ::= τ | x(y) | xy | x(Y ) | x〈P〉

where x,y are names and X ,Y are process variables. The process output prefix x〈P〉
can be use to send a process P on the channel x, while the process input prefix
x(Y ) can be used to receive the process P and assign it to the process variable Y .
Without delving into the details of the operational and abstract semantics for HOπ ,
higher-order communication can be realised by transitions such as:

x〈P〉.Q | x(Y ).R τ−→ Q | R[P/Y ]

For example, replication !P can be coded in HOπ by the process

(r)( Dup | r〈P | Dup〉.nil )
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where Dup def
= r(X).(X | r〈X〉.nil). Roughly, process Dup waits to receive a process

on r, stores it in X , spawns a copy of X and re-sends X on r. When Dup runs in
parallel with r〈P | Dup〉.nil, then the process P | Dup is released together with a
further activation r〈P | Dup〉.nil, so that many more copies of P can be created in
the same way. The name r is restricted to avoid interference from the environment.

To encode HOπ in the (ordinary, monadic) π-calculus, the idea is to encode a
process output prefix x〈P〉 by installing a server that spawns new copies of P upon
requests on a (private) channel p which is communicated in place of P. Then, the
name-passing mechanism of π-calculus allows us to encode process input prefixes
such as x(Y ) as ordinary input prefixes x(xY ) that will receive the name p and bind it
to the variable xY , which, in turn, can be used to invoke the server associated with
P by replacing all occurrences of Y with the simple process xY xY .nil (like a service
invocation). Formally, we define a mapping H from HOπ processes to π-calculus
ones as the homomorphic extension of the function such that

H (x〈P〉.Q)
def
= (p)( H (Q) | !p(xp).H (P) ) with p,xp 6∈ fn(P)

H (x(Y ).R) def
= x(xY ).H (R) with xY 6∈ fn(R)

H (Y ) def
= xY xY .nil

where we assume a reserved set of names xY is available, one for each process
variable Y .

13.4 By using the axioms for structural congruence, we have (with x 6∈ fn(p))

(x)p≡ (x)(p | nil)≡ p | (x)nil ≡ p | nil ≡ p

13.5 Take p def
= nil and q def

= nil | (x)xy.nil. We have fn(p) =∅ and fn(q) = {y}, but
both p and q have no outgoing transitions and therefore are strong early full bisimilar.

Problems of Chapter 14

14.2

1. The PTS and its transition matrix P are
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2. It is immediate to check that the DTMC is ergodic, as it it strongly connected
and has self loops. We compute the steady state distribution. The corresponding
system of linear equations is

1
2 π1 +

1
5 π3 = π1

1
2 π2 +

1
5 π3 = π2

1
2 π1 +

1
2 π2 +

1
5 π3 +

1
3 π4 +

1
3 π5 = π3

1
5 π3 +

1
3 π4 +

1
3 π6 = π4

1
5 π3 +

1
3 π5 +

1
3 π6 = π5

1
3 π4 +

1
3 π5 +

1
3 π6 = π6

π1 +π2 +π3 +π4 +π5 +π6 = 1

from which we derive 

π1 = 2
5 π3

π2 = 2
5 π3

2
5 π3 = 1

3 (π4 +π5)

π6 = 3
5 π3

π4 = 3
5 π3

π5 = 3
5 π3

18
5 π3 = 1

Therefore: π3 =
5

18 , π1 = π2 =
1
9 and π4 = π5 = π6 =

1
6 , i.e., π =

∣∣ 1
9

1
9

5
18

1
6

1
6

1
6

∣∣.
3. We have



392 Solutions

π
(0) =

∣∣1 0 0 0 0 0
∣∣

π
(1) = π

(0)P =
∣∣ 1

2 0 1
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∣∣
π
(2) = π

(1)P =
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4 +
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1
4 +

1
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1
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1
10 0
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1
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7
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1
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1
10 0

∣∣
π
(3) = π

(2)P =
∣∣... 1

30 +
1

30

∣∣= ∣∣... 1
15

∣∣
Thus, the probability of finding the mouse in room 6 after three steps is 1

15 .

14.6

1. The PTS and its transition matrix P (with states ordered as R,W,O) are
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It is immediate to check that the DTMC is ergodic, as it it strongly connected and
has self loops.

2. Since the machine is waiting at time t, we can assume π(t) =
∣∣0 1 0

∣∣. Then,
π(t+1) = π(t)P =

∣∣0 1
10

9
10

∣∣ and the probability of being operating is 0.9.
3. We compute the steady state distribution. The corresponding system of linear

equations is 

9
10 π1 +

1
20 π3 = π1

1
10 π1 +

1
10 π2 +

1
10 π3 = π2

9
10 π2 +

17
20 π3 = π3

π1 +π2 +π3 = 1

from which we derive π1 =
3

10 , π2 =
1
10 and π3 =

3
5 and the probability of being

operating in the long run is 0.6.

14.8

1. The embedded DTMC is defined by the matrix

P =

∣∣∣∣0 1
1 0

∣∣∣∣
2. Let π(0) =

∣∣p q
∣∣ for some p,q ∈ [0,1] with q = 1− p. We have π(1) = π(0)P =∣∣q p

∣∣ and π(2) = π(1)P =
∣∣p q

∣∣= π(0). Therefore
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π
(t) =

∣∣p((t+1) mod 2)q(t mod 2) p(t mod 2)q((t+1) mod 2)
∣∣

Note that the embedded DTMC exhibits a periodic behaviour that does not depend
in any way on the rates λ and µ .

14.10

1. The sojourn time probability is defined as the probability of not leaving the state.
We have

P(Xt = s0 | X0 = s0) = e−λ t

with λ = λ1 +λ1 = 2λ1.
2. Since the sum of all the rates for the transitions leaving s0 is 2λ1 and s1 and s3

have one single outgoing transition each with rate λ2 > 2λ1, then s0 cannot be
equivalent to s1 and s3. For the same reason, s2 is not equivalent to s1 and s3.
Then, let us consider the equivalence relation R def

= { {s0,s2} , {s1,s3} }. Next, we
show that R is a bisimulation relation. Let I1 = {s0,s2} and I2 = {s1,s3}. We have

γC(s0, I1) = λ1 γC(s0, I2) = λ1
γC(s2, I1) = λ1 γC(s2, I2) = λ1

γC(s1, I1) = λ2 γC(s1, I2) = 0
γC(s3, I1) = λ2 γC(s3, I2) = 0

Problems of Chapter 15

15.1 It can be seen that reactive, generative and simple Segala models can all be
expressed in terms of Segala models.

• Take a reactive model αr : S→ L→ (D(S)∪1). We can define its corresponding
Segala model αs : S→℘(D(L×S)) as follows, for any s ∈ S, ` ∈ L:

– if αr(s)(`) = ∗, then αs must be such that ∀d ∈ αs(s) and ∀s′ ∈ S it holds that
d(`,s′) = 0;

– if αr(s)(`) = d (with d ∈ D(S)), then there is d` ∈ αs(s) such that ∀`′ ∈ L,
`′ 6= ` and ∀s′ ∈ S it holds that d`(`′,s′) = 0 and d`(`,s′) = d(s′).

• Take a generative model αg : S→ (D(L×S)∪1). We can define its corresponding
Segala model αs : S→℘(D(L×S)) as follows, for any s ∈ S:

– if αg(s) = ∗, then we simply set αs(s) =∅;
– if αg(s) = d (with d ∈D(L×S)), then we let αs(s) = {d}.

• Take a simple Segala model αsim : S→℘(L×D(S)). We can define its corre-
sponding Segala model αs : S→℘(D(L×S)) as follows, for any s ∈ S:

– if (`,d)∈αsim(s) (with d ∈D(S)), then there is d(`,d) ∈αs(s) such that ∀`′ ∈ L,
`′ 6= ` and ∀s′ ∈ S it holds that d(`,d)(`′,s′) = 0 and d(`,d)(`,s′) = d(s′).
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Note that representing generative models in simple Segala ones is not always
possible. This is due to the fact that, in general, when αg(s) = d ∈D(L×S) then d
can assign probabilities to pairs formed by a label ` and a target state s′, so that when
we focus on a single label ` we can have ∑s′∈S d(`,s′)< 1, while in a simple Segala
model, if (`,d) ∈ αsim(s) then ∑s′∈S d(s′) = 1.

15.2 We have that s0 and s2 are bisimilar, while s0 and s1 are not (and therefore also
s2 is not bisimilar to s1).

The Larsen-Skou formula 〈2¤〉 1
3
(〈coffee〉true∧〈beer〉true) is satisfied by s1 and

not by s0.
The equivalence relation R def

= { {s0,s2} , {s′0,s′2} , {s′′0 ,s′′2 ,s′′′2 } } is a bisimulation
relation that relates s0 and s2. In fact, letting I1 = {s0,s2}, I2 = {s′0,s′2} and I3 =
{s′′0 ,s′′2 ,s′′′2 } we have the equalities

γ(s0)(2¤)(I2) =
2
3 γ(s2)(2¤)(I2) =

2
3

γ(s0)(2¤)(I3) =
1
3 γ(s2)(2¤)(I3) =

1
3

γ(s0)(3.5¤)(I2) =
1
3 γ(s2)(3.5¤)(I2) =

1
3

γ(s0)(3.5¤)(I3) =
2
3 γ(s2)(3.5¤)(I3) =

1
3 +

1
3 = 2

3

γ(s′0)(coffee)(I1) = 1 γ(s′2)(coffee)(I1) = 1

γ(s′′0)(beer)(I1) = 1 γ(s′′2)(beer)(I1) = 1 = γ(s′′′2 )(beer)(I1)

where all the omitted cases are assigned null probabilities.

Problems of Chapter 16

16.1 Let αPEPA : S→ L→ S→ R be a transition function that assigns the rate
αPEPA(s)(`)(s′) to any transition s `−→ s′ (it assigns rate 0 when there is no transition
from s to s′ with label `). We extend the transition function to deal with sets of target
states, by defining the function γPEPA : S→ L→℘(S)→ R as

γPEPA(s)(`)(I) = ∑
s′∈I

αPEPA(s)(`)(s′)

Then, we define the function ΦPEPA :℘(S×S)→℘(S×S) by

∀s1,s2 ∈ S. s1 ΦPEPA(R) s2
def
= ∀` ∈ L. ∀I ∈ S/≡R . γPEPA(s1)(`)(I) = γPEPA(s2)(`)(I)

Finally, a PEPA bisimulation is a relation R such that R⊆ΦPEPA(R) and the PEPA
bisimilarity 'PEPA is the largest PEPA bisimulation, i.e.,
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'PEPA
def
=

⋃
R⊆ΦPEPA(R)

R

16.2

1. We let
P def
= (get,rg).P′ R def

= (get,rg′).R′

P′ def
= (task,rt).P R′ def

= (update,ru).R

S def
= (P ��

∅
P)��{get}R

2. Since rg′ > 2rg, when computing the apparent rate of action get in S we have

rget(S) = min{rget(P ��
∅

P),rget(R)}
= min{rget(P)+ rget(P),rg′}
= min{2rg,rg′}= 2rg

3. The LTS of the system S has eight possible states:

(P′��
∅

P)��{get}R′
(task,rt) //

(update,ru)

��

(P ��
∅

P)��{get}R′
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��
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∅

P′)��{get}R′
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(update,ru)

��

S
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hh
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66

(P′��
∅

P)��{get}R

(task,rt)

66

(get,rg) ,,

(P′��
∅

P′)��{get}R
(task,rt)oo (task,rt) // (P ��

∅
P′)��{get}R

(task,rt)

hh

(get,rg)rr
(P′��

∅
P′)��{get}R′

(update,ru)
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(task,rt)

FF

(task,rt)
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